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Assc. Prof. Olivier Blazy
University of Limoges

Paris, August 2021





Acknowledgments
First of all, I would like to wholeheartedly express my gratitude to Matthieu
Rivain, Aleksei Udovenko and Junwei Wang for giving me the opportunity to
do the internship at CryptoExperts and for guiding me throughout 6 months.
Without their support, it could not be possible for me to accomplish my
internship. I would like to particularly thank Matthieu for always trying to find
possible solutions to help me when I asked for something, not only in terms
of knowledge but also in other problems. I would like to particularly thank
Aleksei for all of his clear explanations whenever I had questions. Although
we have not met physically yet because of the pandemic, he always came up
with detailed answers very soon after I posed my questions. I also would like to
particularly thank Junwei for the meticulous care he gave to me and for always
saying “yes” when I needed an additional meeting.

Working at CryptoExperts will definitely be a memorable duration in my
career path. I would like to acknowledge Pascal Paillier and Louis Goubin for
always showing the warmest and nicest welcome to me as soon as I started
working at their company although I did not work with them directly. I am
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Abstract
In this work, we study the cryptographic methods used in Bitcoin and Ethereum
including key generation and ECDSA signature. Then, we study in details
the components of a transaction in these two cryptocurrencies. Based on
this background knowledge, we design and develop a cryptocurrency wallet
application with the high considerations of security and privacy running on
Android smartphones. In our implementation, we focus on the protection of
secret keys in the ECDSA signature with the orientation of leveraging white-
box cryptography. Each secret key stored in the wallet application is protected
by a secure container, namely, a token. We develop a trusted server which is
responsible for generating tokens. We also survey some typical attacks and
corresponding countermeasures on ECDSA, then apply these countermeasures
to the implementation.

For the results, our wallet application is capable of receiving coins from others
and sending coins to others by creating new transactions and broadcasting them
to the decentralised network. The trusted server is able to generate and transfer
tokens when it receives requests from the wallet application. A token can only
be operated by the corresponding ECDSA signature generator of the server.
Regarding the white-box implementation of ECDSA, it is still in progress of
researching and developing.
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1. Introduction

1.1. Cryptocurrency and Blockchain

A cryptocurrency is an electronic and entirely virtual currency consisting of
many concepts and technologies. Unlike traditional currencies, a cryptocurrency
is formed by a distributed, peer-to-peer system and users of the network
communicate with each other via the internet. Coins of a cryptocurrency are
used as assets and can be transmitted among participants in the network. For
digital money, cryptography is the main factor which provides the basis for
trusting the legitimacy of a user’s claim to value.

The cornerstone of a cryptocurrency is the so-called blockchain which is
at the heart of the peer-to-peer network. Blockchain is a distributed ledger
recording all valid transactions. In simple terms, a transaction tells the network
that a user has transferred some coins under his control to another user. A
cryptocurrency account is identified by a string called an address derived from
a public key and the corresponding private key can be used by its owner to
sign a transaction that transfers coins to another account. A transaction is
considered as a valid one by the network only if it includes a proof of ownership
for the amount of coins whose value is being sent. This proof is called a digital
signature and can be validated by anyone with the owner’s public key. To
spend coins, one must create a valid signature by his secret key and attach
this signature in the transaction. Many cryptocurrencies are based on Elliptic
Curve Digital Signature Algorithm (ECDSA) (Johnson et al., 2001).

New coins are created through a process called “mining”. In this process,
miners validate each transaction and gather them into a new block, then involve
competing to find a solution for a mathematical problem. This problem takes
the information of the new block and the latest block in the ledger as arguments
in order to establish a link between the new block and the previous one (which
explains the term “blockchain”). The solution is called a “proof-of-work” and
found out by using the computer’s processing power. In addition to the value
sent to a recipient, one normally has to include an amount of fee for the miner
who validates his transaction.
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1. Introduction

1.2. The need of a secure wallet application
Cryptocurrencies have emerged in the last decade after the publication and
development of the Bitcoin system (Nakamoto, 2009). As of today, there
exists more than one hundred cryptocurrencies with a capitalisation beyond 50
million USD, and the capitalization of the Bitcoin (the highest one) reaches
830 billion USD1. At the moment of this writing, one Bitcoin is worth 44,517
USD which is an appealing number and definitely a motivation for attackers
to attempt stealing. In addition to solve the longstanding e-cash issue, many
new applications have emerged from the blockchain technology. In particular,
the ledger capability offered by the blockchain enables a reduction of the cost
attributed to the verification of transactions by removing the need for a trusted
third party in many applications.

The main security issue with cryptocurrencies resides in the protection of the
users’ secret keys, which reveals to be a hard task in practice. Even the most
ephemeral key exposure allows an adversary to sign a transaction transferring
all the coins on the account to another (pirate) account. The signed transaction
is then instantly pushed to the peer-to-peer network and quickly added to
the blockchain, which makes it irreversible. Many malware programs have
been detected to steal cryptocurrencies from owners who use weak protection
mechanisms2.

Secret keys are often stored in a digital wallet on each user’s computer or
smartphone. Especially, a smartphone is an open and vulnerable environment.
An application on a smartphone usually suffers from diverse attacks (Hur and
Shamsi, 2017). Therefore, to protect secret keys on smartphones and hence
protect users’ assets, it is essential to have a secure wallet application.

1.3. White-box cryptography
Traditionally, we have worked with a security model in which the cryptographic
primitive is considered as a black-box by the attacker. In a black-box model, an
attacker can only observe and perform attacks with the input and output of the
cryptographic primitives. However, as pointed out in (P. Kocher et al., 1998)
and (P. C. Kocher et al., 1999), real-world deployments may leak some sensitive
information through timing or power consumption that attackers can exploit
to recover the secret key. This gave rise to the gray-box attack model which
allows an adversary to recover the key based on side-channel information.

The white-box model considers the assumption that an adversary has full
control over the implementation as well as the execution environment. This
enables an adversary to perform static analysis on the software, inspect and alter

1See at: https://coinmarketcap.com
2See at: https://www.coindesk.com/malware-anubis-cryptocurrency-wallets
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1. Introduction

the memory used, and even alter intermediate results. The goal of white-box
cryptography is to protect secret keys embedded in a cryptographic software
deployed in an untrusted environment where the software might be attacked by
such a powerful adversary.

1.4. Our Main Work
The goal of the internship is to develop a secure cryptocurrency wallet applica-
tion running on Android devices. The most sensitive component in our wallet,
namely, the ECDSA signature generator, is protected in such a way that private
keys of users are ensured not to leak during the signing procedure. Moreover,
keys are not directly generated as well as stored in the wallet application. The
foreseen architecture makes use of a dynamic ECDSA white-box implemen-
tation that can operate transactions from tokens. A token can be seen as a
secure container for an ECDSA private key which can only be operated by a
predetermined white-box implementation and which is locked by a password
and environmental fingerprint. A trusted server is responsible for securely gen-
erating tokens and transferring them to the wallet application. By doing so,
keys are stored in the wallet under the forms of tokens and securely used inside
a white-box implementation of ECDSA. Figure 1.1 shows an overview of the
wallet architecture.

Figure 1.1.: Overview of the secure cryptocurrency wallet architecture

Following the goal described above, the main work we have done in this
project during the 6-month internship includes:

1. Studied the key architecture behind cryptocurrencies, then implemented

3



1. Introduction

the key generation scheme which is based on an original seedphrase. We
also gave efficient solutions for key management as a wallet application
operates with a number of different keys. Moreover, we considered the
privacy-preserving aspect and found out solutions for our scheme with
the problem of reusing a key for several transactions.

2. Studied the transactions of Bitcoin and Ethereum in detail, then built
an Android application which is capable of creating new transactions,
sending coins to others by broadcasting transactions to the decentralised
network, and receiving coins from others.

3. Designed and developed a token generator running on a server and an
ECDSA signature generator in the wallet application with considerations
of security. For each pair of these two generators, we established a con-
nection in such a way that tokens generated by a generator are only able
to be operated by the corresponding signature generator.

4. Studied possible attacks and countermeasures on ECDSA, then imple-
mented the countermeasures and applied to the signature generator.

1.5. Chapter Organisation
This report is organised as follows:

• Chapter 2 presents the mathematical concepts that we use throughout
this report. In particular, this chapter introduces the elliptic curve and
the computations on it including point addition and scalar point multipli-
cation.

• Chapter 3 analyses the key and address generation in detail. This gen-
eration is mainly based on elliptic curve cryptography and follows the
standards of Bitcoin and Ethereum communities which are widely used
in almost other wallet applications.

• Chapter 4 first describes the context of a transaction in Bitcoin network,
then presents the components of a Bitcoin transaction. After that, we
show how to create a new transaction in our wallet and broadcast it onto
the decentralised network.

• Chapter 5 first gives an overview of Ethereum network, then presents the
components of a Ethereum transaction. Similar to Bitcoin, we also shows
the steps to create a new Ethereum transaction and broadcast it.

• Chapter 6 gives the details of the application development. We present
the application architecture and the general workflow of the wallet. We
also analyse the implementation of a typical usecase, namely, Bitcoin
transaction creation.

• Chapter 7 discusses the ECDSA signer in the wallet application and
the token generator in the server. We show how to implement these two
generators in detail and analyse the security perspectives.

4



1. Introduction

• Chapter 8 surveys some typical attacks on ECDSA and their countermea-
sure. We also apply the countermeasures for our wallet application.

• Chapter 9 concludes our work and discusses the future work.

5



2. Elliptic Curve Group Operation
In this chapter, we introduce the mathematical concepts about elliptic curves.
Cryptographic computations throughout this project is mostly based on elliptic
curve cryptography. We first present the definition, then the addition of two
points and the scalar multiplication. We also review some efficient algorithms
using for scalar multiplication.

2.1. Definition of Elliptic Curve
An elliptic curve over a field K is a set of points (x, y) which are solutions of a
bivariate cubic equation (Menezes, 1992) and defined by a Weierstrass equation:

y2 + a1xy+ a3y = x3 + a2x
2 + a4x+ a6 (2.1)

where a1, a2, a3, a4, a6 ∈ K and the discriminant of the curve ∆ 6= 0.
A Weierstrass equation can be simplified by applying change of coordinates.

With a, b ∈ K, we consider the following cases:

• If char(K) 6= 2 and char(K) 6= 3, the equation 2.1 can be transformed
to

y2 = x3 + ax+ b (2.2)
• If char(K) = 2, then 2.1 can be transformed to

y2 + xy = x3 + ax2 + b (2.3)

• If char(K) = 3, then 2.1 can be transformed to

y2 = x3 + ax2 + b (2.4)

A special point O named the “point at infinity”, together with the set of
points on an elliptic curve, forms an abelian group.

2.2. Point Addition on Elliptic Curve
We define P +O = O+ P = P for all P on the curve. In this work, we follow
the recommended elliptic curve domain parameters (Brown, 2010) and focus to
the case of char(K) 6= 2, 3.

6



2. Elliptic Curve Group Operation

Point Addition for char(K) 6= 2, 3
Let P = (x1, y1) and Q = (x2, y2), P 6= O and Q 6= O, be two points on an
elliptic curve. The inverse of P is −P = (x1,−y1). With Q 6= −P , the sum of
P +Q = (x3, y3) is calculated as

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3)− y1

where

λ =



y2 − y1
x2 − x1

if P 6= Q

3x2
1 + a

2y1
if P = Q (Point Doubling)

To calculate the subtraction Q− P , we add Q with the point −P .

2.3. Scalar Multiplication on Elliptic Curve
The operation of adding a point P to itself d times is called “scalar multiplication”
by d and the result is denoted as dP . This is the basic operation of elliptic
curve cryptosystems. Scalar multiplication on an elliptic curve is the analogy of
exponentiation in the multiplicative group of integers modulo a fixed integer.
The security of elliptic curve cryptosystems is based on the hardness of the
elliptic curve discrete logarithm problem. Performing the scalar multiplication
efficiently and securely is crucial to a cryptographic device.

Double-and-Add Method
A point multiplication can be computed with the straightforward approach using
double-and-add method as shown in algorithm 1. This method is analogous to
the square-and-multiply algorithm for exponentiation. Considering a balanced

exponent d, this algorithm requires 1S+
1
2M per bit of the exponent on average,

where S is the cost of a doubling operation and M is the cost of a point addition.

Binary NAF Method
The “non-adjacent form” (NAF) uses digits from {−1, 0, 1} to represent d.

d =
∑

0≤i<l

di2i where di ∈ {−1, 0, 1}

7



2. Elliptic Curve Group Operation

Algorithm 1: Left-to-Right Double-and-Add
Input: point P , secret d = (dn−1, ..., d0)2
Output: Q = dP

1 Q← P
2 for i = n− 2 down to 0 do
3 Q← 2Q
4 if di = 1 then
5 Q← Q+ P
6 end
7 end
8 Return Q

In a scalar multiplication, this representation helps to speed-up the execution
since the number of elementary point operations is reduced. We notice that
subtraction in elliptic curve has the same cost as addition. Algorithm 2 shows

the steps of this method. This algorithm requires 1S +
1
3M per bit of the

exponent on average.

Algorithm 2: Binary NAF Method
Input: point P , secret d = (dn−1, ..., d0)NAF

Output: Q = dP
1 Q← P
2 for i = n− 2 down to 0 do
3 Q← 2Q
4 if di = 1 then
5 Q← Q+ P
6 end
7 if di = −1 then
8 Q← Q− P
9 end

10 end
11 Return Q

Montgomery Ladder
Let P1 = (x1, y1), P2 = (x2, y2), P1 + P2 = (x3, y3), P1 − P2 = (x4, y4) and
2P1 = (x5, y5) be points on the curve y2 = x3 + ax+ b.

Montgomery observed that the x3 and x5 can be calculated from the x1,x2
and x4 without using any y-coordinate.

8



2. Elliptic Curve Group Operation

x3 =
2(x1 + x2)(x1x2 + a) + 4b

(x1 − x2)2 − x4 (2.5)

x5 =
(x2

1 − a)2 − 8bx1
4(x3

1 + ax1 + b)
(2.6)

Taking advantage of this observation, the multiplication can be computed
by a sequence of pairs (Q,H) = (sP , (s+ 1)P ). This sequence always ensures
the property H −Q = P . Algorithm 3 shows the details of this method. This
algorithm always requires 1S + 1M per bit, regardless of the value of d. Since
the number of operations executed in each iteration does not depend on the
scalar d, Montgomery Ladder is a constant-time scalar multiplication algorithm.

Algorithm 3: Montgomery Ladder
Input: point P , secret d = (dn−1, ..., d0)2
Output: Q = dP

1 Q← P
2 H ← 2P
3 for i = n− 2 down to 0 do
4 if di = 0 then
5 H ← Q+H
6 Q← 2Q
7 else
8 Q← Q+H
9 H ← 2H

10 end
11 end
12 Return Q

9



3. Managing Keys and Addresses
In this chapter, we discuss in more detail how we generate and manage keys
and addresses in the wallet application. At first, we describe the cases in which
keys and addresses are manipulated in the section 3.1. Next, we present the
derivation of addresses in Bitcoin and Ethereum in the section 3.2. Section 3.3
analyses the privacy problem in case we reuse addresses, which leads to the
solution of the tree-like structure for keys presented in the section 3.4. This
solution is based on Bitcoin Improvement Proposals (BIP) and widely used as
standards in cryptocurrency wallet applications in practice.

3.1. Roles of Keys and Addresses
There are two main features which a cryptocurrency wallet must support. The
first feature is to inform users how many coins they have. In other words, the
wallet app has the ability to detect when there is someone sending coins to
addresses managed by the app, and when users send coins from this wallet to
others. The second feature is to perform transactions and broadcast them into
the blockchain network. When users want to pay their bills or send coins to
somebody, the wallet has to create new valid transactions and publish them to
the decentralized network.

Keys in cryptocurrencies, as an asymmetric key encryption scheme, come in
pairs where each pair consists of a private key and a public key. An address is a
digital fingerprint of a public key. The combination of these three components
(private key, public key, address) establishes the ownership of coins.

• Private key: it is used to generate a digital signature which is an essential
part of transactions. Without having a valid signature, transactions cannot
be included in the blockchain. Therefore, one has the control of coins if
he/she has a copy of the private key.

• Public key: when a new transaction is published in the decentralized
network, one of the miners have to check whether this transaction is valid.
The miner uses the public key in this validation process.

• Address: it specifies the origin or the destination of coins in a transaction.
An address has its balance which is the amount of coins controlled by its
corresponding private key. The length of an address is shorter than the
length of its public key, and hence, the size of a transaction is decreased.

10



3. Managing Keys and Addresses

3.2. Derivation of Address from Key
A cryptocurrency wallet contains a collection of key pairs. Each pair consists
of a private key and a public key. We denote the private key as d, the public
key as Q and the address as A. The private key is a number and it is usually
picked at random. From a private key, we use elliptic curve multiplication to
generate its public key. And from a public key, we use a one-way hash function
to generate a bitcoin address. This procedure is depicted in the figure 3.1. This
is the common way to derive an address from its key. However, there are some
differences in the hash function used by each cryptocurrency.

Figure 3.1.: Derive address from its key

Bitcoin Address
From a public key Q, Bitcoin uses SHA256 and RIPMD160 to compute the
corresponding address. Note that the concatenation of x-coordinate and y-
coordinate of Q is the input of this hash function.

A = RIPEMD160(SHA256(Q))

The result of this hash function hash the length of 160 bits. Then, it is
encoded by Base58Check. Base58 is a subset of Base64, using uppercase and
lowercase letters and numbers, but omitting some characters that frequently
cause confusions and can appear identical when displayed in some fonts.

AlphabetBase58 = AlphabetBase64 \ {0,O, l, I,+, /}

Base58Check encoding uses Base58 alphabet to encode and adds a checksum
part at the end of the result. This checksum is generated by putting the
concatenation of the version and the payload into double SHA256 hash. We
then take the first 4 bytes as the checksum.

A version number is the prefix on each address which indicates the type of
the address. Possible types include mainnet address, testnet address, extended
public key, etc.

11



3. Managing Keys and Addresses

Ethereum Address
Unlike Bitcoin, Ethereum uses only one hash function Keccak256 to produce an
address from its public key. Then, we take the last 20 bytes of the hash output
as the address.

A = last 20 bytes(Keccak256(Q))

Ethereum uses hexadecimal format for its addresses. The checksum part is
optional to include. This checksum is calculated by capitalisation defined in
(Buterin and de Sande, 2020). In short, it puts the address into Keccak256
hash and take the first 20 bytes. Consider each letter in the hexadecimal format
of the output, if it is greater than or equal to 0x8, capitalize the alphabetic
address character at the same position in the address.

3.3. Privacy Problem of Reusing Addresses and
Solution

In reality, each person has a secret PIN to access the bank account and a
public account number to receive money. We might think it is analogous that a
person in a cryptocurrency network has one private key to control the asset
and one public address to receive coins. In fact, it is fine if we interact with the
blockchain network by only one address. However, reusing addresses is a bad
idea in practice.

Once we spend coins, our public key is revealed since it is included in the
transaction and hence in the ledger. The secret key is protected by the discrete
log problem, which is unlikely to be broken in the near future. An idea widely
used in the cryptocurrency community is to split the total balance into smaller
amounts and control them by many secret keys. By this method, we have many
addresses in our wallet. Ideally, we use each address only once and do not reuse
it again in the future.

The other important reason why we should not reuse addresses is to protect
the privacy of users. Consider the case when Alice sends coins to Bob, the
receiver (Bob) will know exactly that the address of the sender in the transaction
(which is clear for Bob and for everyone since it is included it the blockchain)
is Alice. If Alice reuses a single address for all transactions, Bob can track and
know everything about her transactions.

Furthermore, there are some websites which determine the richest addresses
in the blockchain. Figure 3.2 shows an example of the recent richest address. It
has totally 644 transactions in history. As a consequence, this address and its
owner can easily become the target of attackers who wants to steal the private
key and hence take control over the coins. The dangers not only come from

12



3. Managing Keys and Addresses

attacks in the computer world but also can be blackmails or crimes taking place
in reality.

Figure 3.2.: The richest address in Bitcoin has 644 transactions

In can be concluded that it is very important to avoid reusing addresses
in practice. Therefore, a wallet application has to manage many private keys
and addresses in order to ensure that each address should be used only once.
Depending on whether the keys contained in wallets are related to each other
or not, the cryptocurrency wallets are categorised into two primary types.

• Non-deterministic Wallet: each key is independently generated from
a random number. There is no relation between the keys in the wallet.
The disadvantage of this approach is that we have to keep copies of all
keys and it needs much effort to manage them. We notice that if the
secret keys are lost, our asset is irrevocably inaccessible.

• Deterministic Wallet: keys are derived from a single master key, called
the seed, by using a one-way hash function. Compared to non-deterministic
wallet, it is sufficient to keep secure only the seed. From this seed, we can
recover all keys that the wallet contains. This type of wallet is widely used
in practice so that we can use a seed with different wallet applications. In
this work, we also use this deterministic key generation which is discussed
in the section 3.4.

3.4. Deterministic Wallet and Key Derivation
In this section, we present in detail the key generation which is used in our
wallet. Keys in a deterministic wallet are derived from a single seed. There are
some different key derivation methods as cryptocurrency wallet technology has
matured. We follow the most popular and commonly used method in the indus-
try, which uses a tree-like structure. It is known as hierarchical deterministic or
HD wallet.

13



3. Managing Keys and Addresses

To create a new HD wallet, there are some standard methods we must follow:

• Mnemonic code for generating deterministic keys, based on BIP-39 (Palat-
inus et al., 2013). This defines how we generate the seed.

• Hierarchical Deterministic Wallets, based on BIP-32 (Wuille, 2013). This
defines how we derive private keys and public keys in HD wallets.

• Multi-Account Hierarchy for Deterministic Wallets, based on BIP-44
(Palatinus and Rusnak, 2014). This defines how we derive keys for different
cryptocurrency (e.g, Bitcoin, Ethereum) from a single seed.

We discuss each of these standards in the the following sections.

Mnemonic Words and Seed Generation (BIP-32)

Figure 3.3.: Generate mnemonic words and seed

Mnemonic is a sequence of English words used to create seeds for HD wallets.
This increases the convenience for users since mnemonic is easy to transcribe
(compared to a hexadecimal string), export and import across wallets.

The steps of generating a new mnemonic code is as follows:

1. Create a random sequence (entropy) ofN bits,N ∈ {128, 160, 192, 244, 256}.
2. Create a checksum of the entropy by taking the first N/32 bits of its

SHA256 hash.
3. Add the checksum to the end of the entropy.
4. Divide the entropy into sections of 11 bits.
5. Map each 11-bit value to a word from the predefined dictionary of 2048

words.
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6. The mnemonic code is the sequence of words

In our wallet, we choose N = 128 and the mnemonic code consists of 12
English words. We then put the string of these words, together with the string
constant “mnemonic” concatenated with an optional passphrase string from
user as the salt, into a PBKDF2 function using 2048 rounds of hashing with
the algorithm HMAC-SHA512. The output of the PBKDF2 function is the seed
of length 512 bits. This is the step 7 in the figure 3.3.

Key Derivation (BIP-39)
In the previous section, we discussed how to generate mnemonic words and
then how to generate the seed. Each key in a HD wallet is deterministically
derived from the seed. In this section, we discuss in detail these derivations.

Master Key from Seed

Figure 3.4.: Derive master key from seed

First, the master key pair is derived by putting the root seed into a HMAC
algorithm with the hash function SHA512. The result is split into two halves:
256-bit left half and 256-bit right half. We take the left one as the master
private key denoted by m, the right one as the master chain code c. Note that
from m, we can easily calculate the master public key M by an elliptic curve
multiplication. The derivation of master key is shown in the figure 3.4.

Child private key from parent private key

From a parent private key mp, its public key Mp and chain code cp, we can
derive a child private key mc, its public key Mc and chain code cc. Using a
HMAC-SHA512 function with (Mp, cp, i) as the input, we obtain the tuple (l,
cc) as the output, where l and cc are the 256-bit left half and 256-bit right half
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of the output respectively (figure 3.5). i is a 32-bit index number, i ∈ [0, 232− 1],
and it allows us to build a tree-like structure.

Figure 3.5.: Derive child private key from parent private key

(l, cc) = HMAC-SHA512(Mp, cp, i) (3.1)
We take cc as the chain code of the child. For the child private key mc, we

calculate it by adding the left part l and the parent private key mp.

mc = mp + l (3.2)
The child public key is easily derived by the scalar multiplication between

the private key mc and the base point G of the elliptic curve.

Mc = mc ×G = (mp + l)×G (3.3)

Extended Private Key: We notice that by this method, knowing a pair (mp,
cp) is enough to derive its children. In practice, we call the concatenation of mp

and cp is an “Extended Private Key”, denoted by xprv. We have xprv = m||c.

Child public key from parent public key

An advantage of this derivation method is that a child public key can be derived
from a parent public key without the need of any private key. Similar to the
child private key derivation, we put (Mp, cp, i) into a HMAC-SHA512 function
and it produces the output (l, cc), as shown in figure 3.6. The child public key
is calculated by the equation 3.4 as follows.

Mc = Mp + l×G (3.4)
We can write the equation 3.4 in a different way as 3.5. Compared with the

equation 3.3, we can see that it is not necessary for a private key to involve in
the process of public key derivation.
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Figure 3.6.: Derive child public key from parent public key

Mc = mp ×G+ l×G = (mp + l)×G (3.5)

Extended Public Key: Analogous to xprv, knowing a pair (Mp, cp) is
enough to derive its children. We call the concatenation of Mp and cp is an
“Extended Public Key” and denote as xpub. We have xpub = M ||c.

Hardened child key derivation

We note that xprv and xpub have the same chain code c. We consider a case
when the private key of a node in the tree structure is somehow leaked as
depicted in the figure 3.7. An attacker can use that private key, say m2, and
the chain code c in the xpub to deduce its parent private key (by 3.6, 3.7) and
all of its children private keys.

Figure 3.7.: Example of leaking private key at a node

(l, c2) = HMAC-SHA512(xpub0, i) (3.6)

m0 = m2 − l (3.7)
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This comes to an alternative solution for private key derivation called hardened
child key derivation. Hardened derivation aims to break the relationship between
parent public key and the child chain code. It replaces the parent public key
Mp by the parent secret key mp in the input of the HMAC-SHA256 function.
We can see in the figure 3.8 this hardened derivation.

Figure 3.8.: Hardened private key derivation

It is important to know that when we use the hardened derivation, we cannot
derive a child public key by its parent public key as before. In practice, besides
normal derivation (figure 3.5), we use hardened derivation to increase the
security of important parts in the tree structure. From a parent private key, we
use the value of the index in the derivation to indicate that the derivation is
normal version or hardened version. In particular,

• i ∈ [0, 231 − 1]: normal derivation
• i ∈ [231, 232 − 1]: hardened derivation. For convenience, i′ is denoted for

a hardened index, where i′ = 231 + i. For instance, 2′ indicates the third
child derived by harden version, and its actual index is 231 + 2.

Identifier Path (BIP-44)
In order to manage keys in a HD wallet effectively, each key in the tree structure
is identified by a path. Levels of the tree are separated by a slash (/). The
general path is specifies as follows:

m/purpose’/coint type’/account’/change/address index

where

• m: is the master private key. It can be M if we use the master public key
to derive.
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• purpose: is always set to 44 (standing for BIP-44). The symbol prime
denotes the hardened derivation.

• coint type: represents the coin. For instance, 0 is Bitcoin, 1 is Bitcoin
Testnet, 60 is Ethereum.

• account: is for organisational purposes. One can have many accounts
with one mnemonic code.

• change: it is either 0 (receiving addresses), or 1 (change addresses). An
address used to show others and get coins from them is called a receiving
address. In Bitcoin, when the amount of coins that a sender includes to
a transaction is greater than the amount she wants to send, the change
amount is not automatically sent back to her. To get this change amount,
the sender has to specify one of her addresses as a destination of the
transaction. This address is called a change address.

• address index: it is i in the derivation.

Figure 3.9 shows an intuitive understanding of the BIP-44 specification.

Figure 3.9.: Tree structure of BIP-44 specification

3.5. Address Balance and Account Balance
Remind that each address has a non-negative balance. It is easy to receive
coins from others by showing them one of our addresses. As presented in the
previous section, we follow BIP-44 to organise keys and addresses in the wallet
application. It means that an account can have many addresses containing coins
at a moment. Therefore, to obtain the total balance of an account, we have to
retrieve the information about balance for each address, then calculate the sum
of them.

However, it is impractical to traverse and get balance for all 232 addresses.
The BIP-44 specification instructs that we need to start from the address with
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Figure 3.10.: Balance of an account

index 0, then 1, 2, 3, ... until we reach 20 consecutive unused addresses. An
address never involved in any transaction is called an unused address. We also
define an address with a positive balance which can be spent in the future as a
being used address. An address with zero balance and already involved in one
or more transactions is an used address and it should not be reused afterwards.
If we choose the strategy which prioritises to spend the being used addresses
with the smallest indices first, the tree structure of keys can be visualised as
the figure 3.10.
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4. Creating Bitcoin Transaction
In this chapter, we present how we create new Bitcoin transactions in our wallet
application. Section 4.1 gives the context of a transaction. Then, we analyse
required components in a transaction in the section 4.2 and introduce the steps
to create a new transaction in the section 4.3. Additionally, we explain how
Bitcoin prevents the double-spending problem and how a miner can validate a
new transaction in this chapter.

4.1. Transaction at a first glance
A transaction is able to specify basic information such as the sender, the receiver,
and the amount of coins. In addition, it also provides the proof which indicates
that the sender has the control over her assets involved in the transaction. This
proof is called the signature of the sender. Totally, a transaction must contain
four essential components: sender, receiver, amount and signature.

However, as presented in the previous sections, the asset of a user is split
into smaller amounts contained in many addresses. It can happen that using
the coins of only one address is not affordable for the amount that the sender
wants to transfer. In Bitcoin, we can combine multiple addresses in order to
have enough coins for the sender in a transaction. In fact, a transaction can
be included with one or more inputs and one or more outputs, where an input
is a script referring to coins of an address under control of the sender, and an
output is a script indicating a certain amount that an address of the receiver is
planned to receive.

A transaction does not automatically send back the change coins (if any) to
the sender. Hence, to take the change back to her wallet, she has to specify an
output with one of her addresses and the change amount. Figure 4.1 shows an
example in which Alice includes two inputs and two outputs in her transaction
to send coins to Bob and get the change back to her wallet.

Transaction Fee
To be verified and appended into the blockchain ledger by miners, it is necessary
for a transaction to include an amount of fee. Depending on how much fee we
are willing to pay, our transaction will be processed early or late. This fee is
automatically calculated by subtracting the total amount of the inputs by the
total amount of the outputs (see figure 4.1 for an instance).
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Figure 4.1.: Understanding basic components of a Bitcoin transaction

In practice, the fee for a transaction is not a fixed value. It is chosen by the
wallet and usually based on two factors: the current resource of all miners in
the network and the number of transactions waiting for validation. Additionally,
fee also depends on the size of the raw transaction since a block in the ledger
has a limited space.

In our implementation, we use an API to get a suitable amount of fee1. This
offers the users three fee levels. The higher the level is, the faster the transaction
will be verified.

4.2. Transaction Components
A transaction can have one or more inputs and one or more outputs. Figure
4.2 (left) shows the example of a transaction with two inputs and two outputs.
The list of inputs and outputs are called vin and vout respectively. Letter “v”
stands for the word “vector”. To make things easier to understand, we explore
the components of an output in the vout list first. An element of vout consists
of the two following fields:

• value: is the amount of coins sending to the address of this output.
• scriptPubKey: is a script containing some opcodes (we discuss this script

in the next sections) and the hash of the receiver’s public key.

An input in the vin list consists of the three following fields:

• txid: is the identifier number of the confirmed transaction which this
current transaction refers to. We notice that the txid of a confirmed
transaction is generated and included by a miner. For the new transaction
we create and broadcast to the decentralized network, it is unnecessary
to have this field (see figure 4.2, right).

1https://bitcoinfees.earn.com
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Figure 4.2.: Example of transaction components (left) and creating a new transaction (right)

• vout: is the position of the output in the vout list of the referred trans-
action.

• scriptSig: is a script containing the signature corresponding to this
input (we discuss this script in the next sections) and the public key of
the sender. Signature is the proof for the ownership of the sender on the
coins she uses in a transaction. Since it is possible to have one or many
inputs in a transaction, there can be one or many messages to be hash.
We explain how to generate messages hash in the next sections.

If we notice carefully, it is not hard to realise that there are no addresses of
the sender and the receiver in a transaction. Also, no information expresses that
how many coins the sender includes in the transaction. Actually, we can derive
these information easily from the fields described above. As presented in the
previous chapter, an address is derived from its public key by hashing. Hence,
based on the public key included in the scriptSig of an input, the address of
the sender can be computed. Similarly, the hash of the public key in an output’s
scriptPubKey is used to derive the receiver’s address. Regarding the amount of
coins that the sender includes in a transaction, this information is determined
through some references to confirmed transactions which is discussed in the
next sections in this chapter.

4.3. Create a New Transaction
To create an input for a new transaction, we have to determine the output of a
confirmed transaction that we will refer to. This reference indicates that the
coins in the output belong to the sender as its scriptPubKey contains the hash
of her public key. Then, we use the signature signed on this transaction by the
private key corresponding to that public key to generate a scriptSig. For an
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output creation in a new transaction, we declare a receiver by a scriptPubKey
containing the hash of his public key along with the transferred value.

Let us consider the example shown in the figure 4.2, Alice has 1 BTC since
there is an output with value 1 containing the hash of Alice’s public key in
its scriptPubKey of a confirmed transaction (txid= 222, left). Alice wants to
send Bob 0.9 BTC and she creates a new transaction (right). The input of this
new transaction refers to the transaction with txid= 222 and the position of
the output in the vout list (vout = 0). Alice proves her ownership of these
coins by the signature included in the scriptSig. She then specifies Bob as
the receiver by the scriptPubKey carrying the the hash of Bob’s public key in
the output. Together with the scriptPubKey, she also specifies the value Bob
will receive after this transaction is validated. In this example, the transaction
fee a miner will get is 1− 0.9 = 0.1 BTC.

Unspent Transaction Output (UTXO) and Double Spending

When Alice creates a new transaction, she needs to refer to one or many outputs
containing the hash of her public key in confirmed transactions. However, these
outputs are referred at most once, otherwise, it causes double-spending problems.
By this method, Nakamoto claimed that the Bitcoin network resists against
double-spending (Nakamoto, 2009).

If an output has not been referred yet, it is call an unspent transaction
output, or an UTXO for short. Balance of an address is the sum of values in all
UTXOs containing the hash of the public key corresponding to that address in
the scriptPubKey. Therefore, the rough idea to get balance for an address is
to traverse all transactions in the blockchain, one by one, and find its UTXOs.
Nevertheless, in practice, techniques related to database and queries are utilised
in order to get information quickly.

Listing 4.1 shows an example of an UTXO information. The important
information includes vout, scriptPubKey and value.

1 {
2 "tx_hash": "92c07941b5df8486be63c212455daf59477a32167389fd47f14b8713fd",
3 "tx_output_n": 1, // vout
4 "value": 10000,
5 "spent": false,
6 "confirmations": 1527,
7 "confirmed": "2021-08-05T23:39:35Z",
8 "script": "76a914f91aae82e7ae4ed5bb5ef68788b85bf7e04ce7e188ac"
9 }

Listing 4.1: Information of an UTXO
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How miners validate a transaction
After being published to the decentralised network, a transaction is appended
to a mempool (waiting list), then validated by miners. This validation includes
checking its references to avoid double-spending problems, checking the owner-
ship of the sender by cryptographic computations with signatures, and ensuring
that the input amount is greater than or equal to the output amount.

Figure 4.3.: Execution of scriptPubKey and scriptSig

To establish a valid reference from an input of a new transaction to an UTXO,
miners use a program executed by a stack with the scriptSig and the referred
scriptPubKey of the sender. The input of this stack is the concatenation of
scriptPubKey and scriptSig as follows.

<sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHECKSIG

This concatenation contains some opcodes denoting operations in a stack:
• DUP: this operation takes the variable on the top of the stack, then

duplicates it and pushes those two back to the stack.
• HASH160: this operation takes the variable on the top of the stack (expect-

edly a public key, denoted by PubK), then computes the value PubKHash =
RIPE160(SHA256(PubK)) and pushes this value into the stack.
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• EQUALVERIFY: this operation takes the two variables on the top of the
stack and compares them. If they match, both are removed and the
execution continues.

• CHECKSIG: this operation takes the two variables on the top of the stack
(expectedly a public key PubK and a signature <sig>), then validates the
signature. If the signature is valid, it pushes TRUE on the top on the stack.

In a transaction, the receiver is locked to an output by a scriptPubKey.
Thus, scriptPubKey is sometimes called the lockingScript. To be able to
spend the coins held by a lockingScript, we use a suitable scriptSig which
is also called the unlockingScript. The unlocking procedure makes use of a
stack to execute the concatenated script above as depicted in the figure 4.3. If
the stack is empty at the end and returns true, the value of UTXO is unlocked
successfully and able to be spent. (A. M. Antonopoulos, 2017) presents this
procedure in more details.

Message Hash in Signature

Figure 4.4.: Example of generating message hash to be signed (for the first input)

As it is possible to include several inputs in the vin list of a transaction, the
messages to be signed are not the same for these inputs. At first, we create a
transaction by filling all required fields for the inputs and outputs. However,
regarding the field scriptSig of the inputs, these scripts are replaced by the
corresponding scriptPubKey of the UTXOs they are referring to, since we do
not have the signatures yet. Then, to generate a message hash for an input,
which is an argument of the ECDSA signer, we remove the scriptSig of that
input (it is replaced by scriptPubKey before), then serialise the transaction
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and pass it through double SHA256 hash function. Figure 4.4 shows an example
of generating message hash to be signed for the first input in the vin list.

After obtaining the signatures from ECDSA signer, we construct a scriptSig
for each input with the signature and the public key corresponding to the private
key used to sign as shown in the figure 4.2. The transaction is now ready to be
broadcasted to the decentralized network.
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Ethereum is often described as the world computer. From a computer science’s
point of view, it is an unbounded state machine with a globally accessible
singleton state and an Ethereum Virtual Machine (EVM) which maintains
that state (A. Antonopoulos et al., 2018). Ethereum is also an open source,
decentralised computing infrastructure and has the ability of executing programs
called smart contracts. In Ethereum, blockchain is used to synchronise and
store the changes of the state. Together with that, ether is the cryptocurrency
used to meter and constrain resource costs of executions.

There are two types of account in Ethereum, including Externally Owned
Account (EOA) and contract account. An EOA has a private key to control the
access to funds or contracts. Unlike EOA, a contract account has smart contract
code. In this work, we only consider the scenario of sending ether from an EOA
to another EOA and ignore smart contracts. Section 5.1 gives an introduction
to the blockchain and the world state in Ethereum. We analyse in detail the
components of a transaction in section 5.2. Next, we show how to create a new
Ethereum transaction in section 5.3. We also discuss the method of recovering
a public key from a signature.

5.1. Blockchain and World State
Both Bitcoin and Ethereum have a blockchain recording full history of confirmed
transactions. Nevertheless, there exists some drawbacks in the architecture of
storage in Bitcoin so that it is inconvenient and costly to retrieve information
from the ledger. Ethereum, on the other hand, proposed using a chain of states
to improve these inconveniences.

Ethereum maintains a world state containing up-to-date information related
to each address used in the network. This world state is updated right after a new
block is mined and appended to the ledger. Figure 5.1 gives us a visualisation
for the chain of blocks and the chain of world states.

As we can see in the figure 5.2, each address in the world state links to an
account state. There are four fields in an account state of an address as follows:

• nonce: this is a counter indicating the number of transactions sent from
this address. This prevents the double-spending problem in Ethereum by
ensuring that each transaction is only processed once.
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Figure 5.1.: Blockchain and World State in Ethereum

• balance: this is the number of ether owned by this address. In fact, the
denomination wei is used to represent balance instead of ether. An ether
equals to 1018 wei.

• code hash: this hash refers to the source code of the smart contract linked
to this account. The smart contract is triggered and executed by calling
to this hash. In the scope of this project, we only focus on externally
owned accounts, and hence this field is empty.

• storage hash: this hash refers to the place storing the data of smart
contract. An contract has to maintain its new state after being called by
storing its local variables in the code. This field is set to be empty by
default.

Figure 5.2.: Inside a world state (left) and an account state (right)

To know the balance of an address in Ethereum, we simply look up this
address on the world state and obtain the information immediately. In the
meantime, retrieving the balance of an address in Bitcoin roughly requires us to
traverse all transactions stored in the blockchain and find the UTXOs of that
address, then calculate the sum of these UTXOs. This is one of the reasons
why there are many commercial APIs offering quick accesses to Bitcoin assets.
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5.2. Transaction Components
Compared to Bitcoin, an Ethereum transaction does not allow to include many
inputs and many outputs. It is also unnecessary to refer to other confirmed
transaction to prove the ownership of the sender. Instead, it has exactly one
address for the sender and one address for the receiver. Thanks to the world
state, it is clear that how much coins the sender has at a certain moment, and
hence more convenient to validate a transaction.

Figure 5.3.: Components of an Ethereum Transaction

An another difference in an Ethereum transaction compared to Bitcoin is the
way of fee calculation. Regarding Bitcoin, size of the transaction is the main
factor determining the fee which is based on an estimation of effort consumed
by a miner. Ethereum, in a different way, uses gas as an unit to measure the
computational effort required to execute operations on the network. Using gas
as the fuel of Ethereum, on one hand, protects the system from the volatility
which can be caused by the rapid change of ether’s value. On the other hand,
it manages the ratio between the costs of various resources used in the network
such as memory, storage.

As depicted in the figure 5.3, an Ethereum transaction must include the
following seven fields:

• nonce: this is one of the most important components defining the order of
executing transactions. As briefly introduced in the account state, nonce
is a counter and hence it is also the number of transactions sent from an
address. Note that a transaction with nonce i is validated by a miner only
when the transaction with nonce i− 1 is already confirmed. Otherwise, it
will be stuck and appended to the waiting list until the transaction i− 1
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is confirmed. If there are two transactions with the same nonce from an
address, one of them will be confirmed and the another will be rejected
depending on which one is validated by the miner first. Therefore, we
should be careful with this field if we want to send some transactions in a
row.

• gasPrice: this is the amount of wei per gas unit that an user is willing
to pay for her transaction. The higher this amount is, the faster her
transaction is likely to be confirmed.

• gasLimit: this is the maximum number of gas units that the sender is
willing to buy in order to complete the transaction. If the receiver address
is a smart contract, the gasLimit is needed to be estimated since in
the program of the contract, there might exist conditions which lead
to different execution paths. However, in the scope of this project, our
target is just to send ether from one address to another. In this case, the
gasLimit needed is fixed at 21,000 gas units.

• to: the destination’s 160-bit address as presented in the previous chapter.
This destination is set to be 160 bits of 0s if this is a smart contract
creation transaction.

• value: number of wei that the sender wants to transfer to the receiver in
this transaction.

• signature: besides the two parts r and s of an ECDSA signature, an
Ethereum transaction has to include one more value, namely v, to indicate
the the sign of y-coordinate of the elliptic curve point in which r is the
x-coordinate.

• data: this is the place where we can put the code of a smart contract. In
case a transaction does not relate to any smart contract, this field is set
to be empty.

We notice that there is no address of the sender in a transaction. In fact, the
sender’s address is derived from the signature included in the transaction. This
is the reason why an Ethereum transaction requires the value of v apart from r
and s in the signature. The detail of this derivation is presented in the section
5.4.

5.3. Create a new transaction
We have to provide all required fields presented in the previous section to
create a new transaction (see Appendix B for the serialisation of an Ethereum
transaction). Regarding the nonce, it is necessary to get the up-to-date value
of the counter corresponding to the address of the sender. This is done by
requesting the nonce value stored on the world state. Moreover, we avoid the
case of creating many transactions in a row in our application in order to
prevent the problems of nonce duplication.
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For the field of gasPrice, we use a third-party API1 to get the recommended
price at the moment of transaction creation. Since our wallet application only
supports the normal transaction in which coins are transferred from one address
to an another, the gasLimit is always fixed to be 21, 000 gas units. The
transaction fee equals to the gasPrice multiplied with the gasLimit in this
case. Note that in cases a transaction contains a smart contract, we have to
set another value for the gasLimit and the transaction fee is equivalent to the
product of the actual consumed gas units and the gasPrice. If the actual used
gas is greater than the value of gasLimit, the miners will stop execute the
transaction and throw an error. Otherwise, only the actual used gas units are
charged in the fee.

The sender also provides the information about destination’s address and
the amount of wei she wants to transfer. The field of data is set to be empty
since we do not use smart contracts. We then serialise this transaction and
pass it through the Keccak256 hash function to get the message hash. This
hash, together with the corresponding private key, are the two arguments of
the ECDSA signer. Finally, the transaction now is ready to be broadcasted
with the output v, r and s of the signer included.

5.4. Public Key Recovery
As mentioned earlier, an Ethereum transaction does not contain the address as
well as the public key of the sender. It is because the public key can be computed
directly from the signature, and then the address can be derived easily. Given
r and s, we can compute two possible public keys since the x-coordinate gives
us two possible points on the elliptic curve. To exactly determine which point
is used, the transaction includes a prefix value v. Let us denote:

R =

(r, y) if v is even
(r,−y) if v is odd

Finally, the public key of the sender is recovered by the following equation:

K = r−1(sR− zG)

where z is the message hash and G is the base point of the elliptic curve.
EIP55 (Buterin, 2016) describes in detail how to set the value of v properly.

This value depends on the chain identifier of the network we are working on.
For example, 1 is the main network, 3 is the ropsten netwok for testing purpose,
etc. In particular,

v = {0, 1}+ CHAIN ID ∗ 2 + 35
1See recommended gas price at https://ethgasstation.info/
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where {0, 1} is the parity of the y-coordinate of the curve point for which r
is the x-coordinate. 35 stands for we hash nine Recursive Length Prefix (RLP)
encoded elements as show in table B.5 of the Appendix B.
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In this chapter, we present in details the implementation of the wallet application.
At first, we present the design pattern used to build the architecture of our
application in the section 6.1. We then show the table in the local database
storing information of addresses and tokens in the section 6.2. After that,
we present the interactions with third-party APIs to get information about
addresses from the decentralised network in the section 6.3. Next, we analyse the
global workflow of our wallet application in the section 6.4. Finally, we showcase
a typical and important usecase in the wallet, namely, Bitcoin transaction
creation in the section 6.5.

6.1. Design Pattern: MVVM

Model-view-viewmodel (MVVM) (Anderson, 2012) is a software architectural
pattern that facilitates the development by separating the graphic user interface
(view) from the business logic (model). The viewmodel of MVVM is a value
converter responsible for exposing data objects from model in such a way
that objects are easily managed and presented. A viewmodel also handles
all view’s display logic and organises accesses to business logic layer. In our
implementation, we use this design pattern to develop the wallet.

In the MVVM architecture, view and viewmodel communicate with each other
to exchange data. A viewmodel also needs to interact with some repositories
which provide data from database or from web services. We use RxJava (Davis,
2019) to handle these communications by events. By RxJava, it is easier to define
a threading model operated with multi-threads. It also helps us manage tasks
running on background threads and main thread. Briefly, the main components
of RxJava include:

• Observable: is a class that emits a stream of data or events.
• Observer: it is a class which receives the events or data, then acts upon

them.
• Scheduler: tells an observable and an observer which thread should be

started. In short, it manages concurrency.
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6.2. Database
A wallet must provide its users information about their accounts such as balance
for each type of cryptocurrencies, exchange prices, etc. In background, our wallet
manages many addresses and public keys in such a way that it is convenient to
create and broadcast new transactions. To do those, we design a local database
where store essential information about addresses, public keys and tokens of
the wallet. Each table in the database is described as below.

Account Table
This table manages different accounts in the same wallet (see table 6.1). We
use Google service to handle login functionality.

id xpub account id coin
1 tpubDC3ELhn74GWbX152iNVn... 11740199... 0
... ... ... ...

Table 6.1.: Account table in database

• id: a counter represents identifier for each record.
• xpub: account extended public keys of Bitcoin and Ethereum received from

offline server. The Android app uses those xpubs to generate addresses.
• account id: each Google account has an identifier. A Google account used

in this app is mapped to a Bitcoin’s xpub and an Ethereum’s xpub. These
two xpubs are derived from a mnemonic code.

• coin: 0 is Bitcoin. 1 is Ethereum.

Address Table
This table stores information related to each address of an account (see table
6.2).

address idx pubkey status category balance unconfirmed ntx haskey
ms6b... 0 03995... 0 0 10000 0 3 1
... ... ... ... ... ... ... ... ...

Table 6.2.: Address table in database

• address: string of an address in the tree (see figure 3.9).
• idx: index of the address in the tree structure of BIP-44.
• pubkey: public key of this address.
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• status: 0 indicates an used address, 1 means a being used address, and 2
means an unused address (see figure 3.10).

• category: 0 means this is a receiving address, 1 stands for a change address
(see figure 3.10).

• balance: number of satoshi (1 BTC = 108 satoshi) for a Bitcoin address,
and number of wei (1 ETH = 1018 wei) for an Ethereum address.

• unconfirmed: this is the coming coins in transactions which are waiting
for a miner to confirm.

• ntx: number of confirmed transactions involving this address
• haskey: 0 means this address does not have its token stored in the wallet

application. Otherwise, it is 1 and it is taken into account in the spendable
amount.

Token Table
This table stores tokens loaded from the server (see table 6.3).

address prvkey
ms6bM4UR4G... a58672b185fe9c...
... ...

Table 6.3.: Token table in database

• address: string of an address in the tree (see figure 3.9).
• prvkey: the token corresponding to this address and loaded from the

server.

6.3. API Usages
In our wallet, we use third-party APIs to get information about addresses from
decentralised networks. To connect to those APIs, we create HTTP requests
and send calls to the third-party servers, then receive responses and extract
information from them. There are two types of a HTTP request: GET and
POST.

• GET: to request data from the server. In this project, we use GET requests
to get information about balance and UTXOs of addresses. A request of
this type is represented clearly in the URL. For example, listing 6.1 shows
the implementation of GET request used to retrieve information about an
address. We concatenate the address to the URL (line 4) and execute it
(line 11). The server then returns a JSON object containing information
about the required address. We need to parse this information (line 13)
to extract information necessary for our process.
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• POST: to submit data to be processed to the server. In this project,
we use POST requests to submit raw transactions. Listing 6.2 shows an
example of submitting a raw transaction by a POST request. We need to
attach the transaction with a suitable format (lines 6, 10) to the request.
Once receiving this request, the server checks if the transaction is in a
valid format, then broadcasts it into the decentralised network.

In our implementation, we use some APIs from different providers. However,
the usages of these API are done by GET and POST requests similar to listing
6.1 and listing 6.2. For more details about these APIs, see the appendix ??.

1 public static Address requestBtcAddressInfo(String addressBase58Check){
2 StringBuilder url = new StringBuilder();
3 url.append(Constants.BTC_ADDRESS_INFO_BLOCKCYPHER);
4 url.append(addressBase58Check);
5 url.append("?includeScript=true");
6

7 OkHttpClient client = new OkHttpClient();
8 Request request = new Request.Builder()
9 .url(url.toString()).get().build();

10

11 Response response = client.newCall(request).execute();
12 JSONObject json = new JSONObject(response.body().string());
13 return Mapper.fromJsonBlockCypherToAddress(json);
14 }

Listing 6.1: Example of GET request

1 public static String requestBtcToBroadcastTransaction(String rawTx){
2 StringBuilder url = new StringBuilder();
3 url.append(Constants.BTC_BROADCAST_CHAINSO);
4

5 JSONObject data = new JSONObject();
6 data.put("tx_hex", rawTx);
7

8 OkHttpClient client = new OkHttpClient();
9 MediaType type = MediaType.parse("application/json");

10 RequestBody body = RequestBody.create(type, data.toString());
11

12 Request request = new Request.Builder()
13 .url(url.toString()).post(body).build();
14

15 Response response = client.newCall(request).execute();
16 JSONObject json = new JSONObject(response.body().string());
17

18 if (json.has("status")) {
19 if (json.getString("status").equals("fail")){
20 return null;
21 }
22 }
23

24 return json.getJSONObject("data").getString("txid");
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25 }

Listing 6.2: Example of POST request

6.4. Workflow of Wallet Application

a) Splash b) Home c) Transaction

d) Receive e) Send-Bitcoin f) Send-Ethereum g) Confirmation

Figure 6.1.: Screenshots of the wallet application

Splash Activity
1. Right after the user opens the wallet application, it shows this activity

with the login button.
2. If the user logins successfully, it will check in the account table of the

database if the Google identifier of this user exists.
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• If yes, it will load the information about this account from the
database and move to home activity.

• If no, the application will as the user to connect to the token server
in order to create a new account and move to home activity.

Home Activity
1. Get the real-time exchange price for Bitcoin and Ethereum by periodically

(2 minutes) requesting with APIs.
2. Show the information about Bitcoin and Ethereum including balance,

unconfirmed amount, logo, etc.
3. Check incoming coins for Bitcoin periodically (2 minutes) for some types

of addresses as below with the APIs. Ideally, we have to observe incoming
coins on all addresses belonging to this wallet. However, it consumes many
requests and leads to reach the limitation of the API providers. Therefore,
we only observe on the addresses which has high probabilities to receive
or sent out coins:

• a receiving address
• a change address
• addresses with tokens available on the wallet.

4. Filter new transactions in the Ethereum network to take and process
transactions related to this wallet. Unlike Bitcoin, we can use a library for
fee to observe real-time new transactions. Then, we have to check if one
of our address relates to any transaction. If yes, we take that transaction
and parse information from it.

5. If the user clicks on a coin (Bitcoin or Ethereum), it moves to the trans-
action activity.

Transaction Activity
1. Load transaction history.
2. If the user clicks on “click to increase spendable?”, the application will

show a list of addresses with positive balance for the user to choose. Then,
if the user connects the application with the token server and clicks the
button “Update”, it will load tokens for chosen addresses and store in the
database. If the token server is close, it will ask the users to establish the
connection.

3. If the user clicks on the button “Receive”, it moves to the receiving
activity.

4. If the user clicks on the button “Send”, it moves to the corresponding
sending activity.
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Receive Activity
1. Get the lowest-index address in the receiving branch (see figure 3.9).
2. Show the QR code and the address string on the screen.
3. If the user clicks on the button “Copy Address”, it will copy the address

to clipboard.

Send-Bitcoin Activity
1. Show placeholders for the user to input information of receivers, the user

can specify more than one output address and the sending amount by the
buttons “plus” and “minus”.

2. The user can choose the level of fee.
3. If the user clicks on the button “Next”, it will check if the total amount

that the user wants to send is smaller than the spendable amount.

• If yes, it will go to the database and select sufficient UTXOs, then
create and sign a new transaction, then move to the confirmation
activity.

• If no, it shows an error notification on the screen.

Send-Ethereum Activity
1. Show placeholder for the user to input information of a receiver. Note

that unlike Bitcoin, an Ethereum transaction can only have one input
address and one output address.

2. The user can choose the level of fee.
3. If the user clicks on the button “Next”, it will check if the total amount

that the user wants to send is smaller than the spendable amount.

• If yes, it will go to the database and select an address as the input,
then create and sign a new transaction, then move to the confirmation
activity.

• If no, it shows an error notification on the screen.

Confirmation Activity
1. Show the raw transaction to be broadcasted.
2. This activity is planned to show information decoded from the raw

transaction for the user to verify before actually broadcasting it.
3. If the user clicks on the button “Send”, it will create a POST request to

broadcast the raw transaction.
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6.5. Usecase: Bitcoin Transaction Creation
In this section, we consider a typical usecase in the wallet application, namely,
creating a new Bitcoin transaction. After filling necessary information about
recipient(s), the user clicks the button “Next” on the send-bitcoin activity (see
figure 6.1e). The clicking action triggers the function onClickSendBitcoin() in
the viewmodel corresponding to this activity. Listing 6.3 presents the execution
after the application receives the signal of creating a new transaction from the
user. It first checks if any address is invalid (lines 6-10), then checks if the
spendable amount is affordable (lines 13-17). If those conditions are satisfied, it
formalises the outputs of the transaction (lines 19-21) and finally triggers the
event of transaction creation (lines 24-31).

1 public void onClickSendBitcoin(List<BTCReceiver> listBTCReceivers){
2 listInputs.clear();
3 listOutputs.clear();
4

5 listOutputs = new ArrayList<>();
6

7 for (BTCReceiver BTCReceiver : listBTCReceivers){
8 if (!BTCReceiver.isValidReceiver()){
9 Toast.makeText(context, "Invalid address or amount").show();

10 return;
11 }
12

13 totalSentAmount = totalSentAmount.add(BTCReceiver.getAmount());
14 if (!coin.isEnoughToPay(totalSentAmount)){
15 Toast.makeText(context, "Not enough spendable coin").show();
16 return;
17 }
18

19 listOutputs.add(
20 new Vout(BTCReceiver.getAddress(), BTCReceiver.getAmount())
21 );
22 }
23

24 transactionUsecase.execute(
25 new SelectBtcSenderObserver(),
26 Event.SELECT_BTC_SENDER_ADDRESS,
27 coin.getId(),
28 totalSentAmount,
29 listOutputs.size()+1,
30 coin.getListFees().get(feeTarget)
31 );
32 }

Listing 6.3: Trigger to create a new Bitcoin transaction

Once the event is triggered, it selects some UTXOs of addresses from database
for the inputs of the transaction (see listing 6.4). Since the Bitcoin transaction
fee depends on the size of the transaction and we do not know exactly this
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size until the transaction is completely created. It means that when we add
one UTXO to the inputs, the transaction fee will be increased. However, it is
insufficient to allow the fee uncontrolled increases as we have to consider the
our spendable amount as an upper bound (lines 13, 25-31). If the spendable
amount allows, the selection function returns a list of UTXOs that we can use
as the inputs of the transaction (lines 17-24, 30).

1 public Single<List<Vin>> selectBtcSender(String tableId, BigInteger
sentAmount, int nOutputs, int fee) {

2 return Single.create(emitter -> {
3 List<Vin> listInputs = new ArrayList<>();
4 BigInteger spendingAmount = BigInteger.ZERO;
5 int nInputs = 0;
6 int sizeInputs;
7 int sizeOutputs = nOutputs* SIZE_VOUT;
8 BigInteger estimatedFee = BigInteger.ZERO;
9

10 List<Address> listUsingAddress = database.loadUsingHasKeyAddress(
tableId);

11 for (Address addr: listUsingAddress){
12 List<UTXO> listUTXO = Wrapper.requestUtxoBtc(addr.

getAddressString());
13 spendingAmount = spendingAmount.add(addr.getBalance());
14

15 String token =
16 database.loadToken(tableId, addr.getAddressString());
17 for (int i=0; i<listUTXO.size(); i++){
18 listInputs.add(new Vin(
19 listUTXO.get(i),
20 addr.getPubkey(),
21 addr.getAddressString(),
22 token
23 ));
24 }
25 nInputs = listUTXO.size();
26 sizeInputs = nInputs * SIZE_VIN;
27 estimatedFee = estimatedFee.add(BigInteger.valueOf((sizeInputs+

sizeOutputs+EXTRA_SIZE) * fee));
28

29 if (spendingAmount.compareTo(sendingAmount.add(estimatedFee)) >=
0){

30 emitter.onSuccess(listInputs);
31 }
32 emitter.onError(new Throwable());
33 }
34

35 });
36 }

Listing 6.4: Select UTXOs for a new transaction

We notice that in the listing 6.3, we also specify the class SelectBtcSenderObserver
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which processes the data returned by the input selection. As of this moment,
we know exactly the size of the transaction, hence the exact transaction fee can
be calculated (see listing 6.5, lines 10-12). Then, we create a raw transaction by
serialising the fields in each input and each output (see line 17 and appendix B).
From the raw transaction, we derive the corresponding messages used to sign
by ECDSA (line 18). We then sign each message for each input and serialise
them again to have the final raw transaction which can be broadcasted (lines
20-28).

1 class SelectBtcSenderObserver extends DisposableSingleObserver<List<Vin>> {
2 @Override
3 public void onSuccess(@NonNull List<Vin> vins) {
4 listInputs = (List<Vin>) e.getData()[0];
5 BigInteger sumInputs = BigInteger.ZERO;
6 for (Vin vin: listInputs){
7 sumInputs = sumInputs.add(vin.getUtxo().getValue());
8 }
9

10 BigInteger actualFee = (listInputs.size()*SIZE_VIN
11 + (listOutputs.size()+1)*SIZE_VOUT) * feeTarget;
12

13 BigInteger changeAmount = sumInputs.subtract(totalSentAmount).
subtract(actualFee);

14

15 listOutputs.add(new Vout(coin.getChangeAddress(), changeAmount));
16

17 TransactionBitcoin transactionBitcoin = new TransactionBitcoin(
listInputs, listOutputs);

18 List<String> listMsgHash = transactionBitcoin.getListMsgHash();
19

20 List<String> listSig = new ArrayList<>();
21 for (int i=0; i<listMsgHash.size(); i++){
22 String msgHash = listMsgHash[i];
23 Signature sig = Signer.sign(msgHash, listInputs[i].getToken());
24 String encodedSig = Signer.encodeSigDER(sig);
25 listSig.add(encodedSig);
26 }
27

28 String rawTx = transactionBitcoin.getRawTransaction(listSig);
29

30 // broadcast rawTx...
31 }
32

33 @Override
34 public void onError(@NonNull Throwable e) {
35 Toast.makeText(context, "Error").show();
36 }
37 }

Listing 6.5: Create and sign a raw transaction
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Figure 7.1 shows the overview of the secure cryptocurrency wallet architecture
which we design and build in this project. In this architecture, the white-box
ECDSA signature and the token generator are user-dependent and they are
linked with each other in such a way that generated tokens can only be operated
by the corresponding white-box implementation. To satisfy the user-dependent
property, the generators require a password from the user to operate. Moreover,
environmental fingerprint is also used to lock the tokens. This aims to prevent
attackers from extracting the white-box ECDSA signature and reuse it. In short,
without any of the three factors (associated white-box part, user’s password and
environmental fingerprint), it should be impossible to get information about
the private key from a token.

Figure 7.1.: Overview of the secure cryptocurrency wallet architecture

To establish the association between the token generator on the server and
the white-box signature generator on the wallet application, we build a service
which is responsible for generating a pair of them. To have a link between these
two ones, the master private keys msk are the same and randomised in this
establishment (see figures 7.2 and 7.4). Therefore, a token generated by a server
can only be operated by its associated signature generator. This establishment
is taken place at the initial phase when a user creates a new account on the
wallet application.
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7.1. Offline Server
An offline server is supposed to run on a trusted computer without connection
to the internet since this server works with sensitive information such as the
mnemonic code of the master seed. There are two types of requests from the
wallet application that the server can receive: creating a new wallet account
and updating tokens.

Request of creating a new wallet account
When receiving a request of this type, the server generates a completely new
mnemonic code by the BIP-39 presented in the previous chapter. It then asks
the user to securely keep this mnemonic code and sends a response to the wallet
application with an attachment of account’s extended public keys for coin types
supported by the wallet. Specifically, the paths of an account’s extended public
keys for Bitcoin and Ethereum are as follows:

Bitcoin: M/44’/0’/0’
Ethereum: M/44’/60’/0’

From an account’s extended public key, the wallet application is able to
generate itself the addresses and public keys belonging to this account by the
derivations discussed in the previous chapter.

Besides, this is also the initial phase where we need to generate the two
associated white-box parts for the token generator and the signature. The
association between these two parts is represented by the embedded key msk as
shown in the figures 7.2 and 7.4 as mentioned earlier. This msk is randomized
at the initial phase, and hence it is unique for each pair of token generator and
white-box ECDSA signature.

Request of updating tokens
Token generator must guarantee that a generated token is a secure container for
an ECDSA private key. Figure 7.2 shows a detailed design of the token generator
part lying on a server. According to this design, a token is a ciphertext of an
AES encryption with an ECDSA private key d as the plaintext. To establish
an association with the white-box signature on the wallet application, we use a
white-box implementation with the embedded key msk for this AES encryption.
Note that the key d is derived from the tree-like structure from a mnemonic
code and its BIP-44 path attached in the request from the wallet application.
In our wallet, we use a message with the following format for the wallet to send
to the server:

45



7. Secure Wallet Architecture

Figure 7.2.: Token generation with white-box cryptography on server

<xpub>-<address type>-<index>-<coin type>

When the server receives a request containing this message, it then extracts
information and constructs a path in the tree structure to the target key of the
request.

• xpub: the user is required to input his mnemonic code at the beginning
to use this functionality. To ensure that the mnemonic code is correct, we
compare the xpub derived from it with the one from the wallet application.

• address type: indicates that we have to generate the key in the receiving
branch or the change branch (see figure 3.9).

• index: indicates the index of the key in the tree structure.
• coin type: indicates that the generated key belongs to Bitcoin or Ethereum.

To ensure the user-dependent property, we use the user’s password to encrypt
the token. This password is stretched by a password-based key derivation
function PBKDF2 before being used as the key for AES encryption. The output
of this encryption is an eToken which is used to transfer and store in the wallet
application.

This server does not store any sensitive information about keys. It requires
the user to input the mnemonic code of his account at the beginning of a
working session. From this mnemonic code and the request sent by the wallet
application with a path in the tree of BIP-44, it is able to generate the private
key d corresponding to that path. In addition to the mnemonic code, the
password pwd is also required when the server is started. Once the server
finishes responding requests about tokens of the wallet application, it is closed
without storing any information. The operation of this server is supposed to
take place on a trusted computer, thus there is no malware which is able to
capture the inputs from an user.
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7.2. Secure Wallet Application

Figure 7.3.: Update tokens to increase spendable amount

Private key generation does not take place on the wallet application. Instead,
the wallet stores some tokens loaded from its secure server. A user has the right
to choose the number of tokens to be stored on the wallet application. The
amount of coins contained in addresses whose private keys are available on the
wallet application under the forms of tokens is called spendable amount, as we
can generate the signatures by these tokens and spend the coins. The coins in
addresses with positive balance without having corresponding tokens available
on the wallet application are called unspendable amount. In order to spend
coins in these addresses, we have to connect the application with the server and
load the corresponding tokens. Figure 7.3 shows the screenshots of our wallet
application where we can see the spendable amount (left) and choose some
addresses with positive balance to load their tokens from the server (right).

The procedure of signing a transaction by its token is depicted in the figure
7.4. An eToken is a secure container of the private key provided by the server
and stored on the wallet. From this eToken, we decrypt it to get the ECDSA
private key d by the reversed flow of token generation presented in the previous
section. It is first put into an AES decryption which takes the stretched pwd
by the PBKDF2 as the key. This decryption gives us the token which is only
encrypted by the white-box AES with the embedded key msk. Decrypting this
token results us the ECDSA secret key d used to sign our transaction. The
signer of ECDSA takes this secret key and the hash of the transaction as the
inputs, then produces the expected signature. We notice that the white-box
implementation covers both the AES decryption with the embedded key msk
and the ECDSA signer. Doing so, we ensure that no information about the
secret key d controlling the coins is leaked.
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Figure 7.4.: Token decryption and signature with white-box cryptography on wallet app

7.3. Security Analysis
The wallet is deployed on smartphones in which a malicious attacker might
control the entire execution environment. The main goal of our design is to
provide a high protection for private keys used to sign transactions in the wallet
application. As we can see in the figure 7.4, the ECDSA key is used only inside
the white-box implementation. An adversary in a white-box attack context
can see not only the inputs and the outputs of the implementation, but also
intermediate computations happening along the way. She can also collect the
addresses and values of accessed memory, or tamper with the implementation
(e.g., injecting faults and altering the control flows). However, it is infeasible for
her to extract the key from the implementation. Thus, white-box cryptography
protects the key extraction from the ECDSA signing process.

We consider the case in which an attacker takes control of the smartphone
where our wallet application is installed and tampers with the wallet implemen-
tation. In the storage of the wallet, there are only eTokens securely containing
ECDSA keys. The attacker could not learn anything from an eToken without
knowing pwd and msk. The pwd is user-dependent and environment-dependent
as it contains the password from the user and the environmental fingerprint.
Suppose that somehow the attacker knows this pwd, she can only decrypt an
eToken to obtain a token still encrypted by msk in the white-box implementa-
tion. Unless she is able to break the white-box part, it is infeasible for her to
extract msk from the implementation.

In case there exists a malware trying to steal useful information from our
wallet, an attacker can only get tokens. Without the white-box implementation,
she cannot achieve the goal of having the private keys controlling coins. In
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this design, there is no useful information about the private keys outside the
white-box part. The only way for an attacker to steal the private keys is to
break the white-box implementation. However, a white-box implementation is
supposed to be resistant against any possible attacks that an adversary can
perform.

In case an attacker can take control over the wallet application and use it as
the owner, she cannot steal all coins since there are a few tokens stored in the
wallet. The number of tokens available in the wallet is chosen by the user (see
figure 7.3, right). The user still keeps himself the mnemonic code and hence
the coins controlled by other private keys (except the stolen ones) are still
secure. There is a trade-off between how frequently the user wants to connect
to the server to update tokens and how many tokens he wants to update in a
connection. The more tokens the user updates in a connection with the server,
the less number of connections it requires. However, he has to face more risks if
an attacker can control his wallet.

Considering the server, it must be deployed on a trusted environment. Despite
the fact that we try to eliminate storing sensitive information such as the user
password and mnemonic code in the server, an attacker can get this information
easily if she is able to attack or install malware on this server. To generate a
token, the server requires the user to input his mnemonic code. In our design,
we always avoid connecting this server to the internet.
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on ECDSA

An adversary in the white-box attack model can be seen as the owner of the
device running the implementation. Hence, she is assumed to have full control
over the execution environment. This enables her to perform physical attacks
in order to extract the key. It implies that a white-box implementation should
resist all existing and future side-channel attacks.

In this chapter, we first present the pseudo-code of the ECDSA as the
algorithm 4. In both Bitcoin and Ethereum, they use the same elliptic curve with
the same parameters defined in secp256k1 (Brown, 2010). We then analyse some
vulnerable computations to side-channel attacks in this algorithm and discuss
some typical attacks exploiting those weakness. For each attack presented in this
chapter, we also discuss its countermeasures and apply to our implementation
in the wallet application.

Algorithm 4: ECDSA signature generation
Input: message hash z, private key d, base point G, order of curve n
Output: signature pair (r, s)

1 Select a cryptographically secure random integer k ∈ [1,n− 1]
2 Compute the curve point (x1, y1) = k×G
3 Compute r = x1 mod n. If r = 0, go back to step 3.
4 Compute s = k−1(z + rd) mod n. If s = 0, go back to step 3.
5 Return (r, s)

8.1. Reusing nonce
It is crucial avoid reusing the nonce k for different signatures because it is easy
to recover this nonce, and hence the private key d from step 4 in the algorithm
4. Suppose that two signatures (r1, s1) and (r2, s2) generated for the messages
z1 and z2 are computed with the same unknown nonce k. The signal of reusing
k is that the first halves of these two signatures are the same, r1 = r2. An
attacker can recover the nonce by as follows:

k =
z1 − z2
s1 − s2
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Then, an attacker can easily calculate the private key:

d =
s1k− z1

r1

Moreover, signing with biased nonces can cause some vulnerabilities. Slightly
smaller nonces allow us to recover the private key easily (Moghimi et al., 2019).
This bias is detected by measuring execution time.

Countermeasure
In the past, some failure implementations reusing k caused users of Bitcoin
wallet on Android to lose their assets1. Nowadays, a nonce is deterministically
generated in the signatures of cryptocurrency wallets from the private key and
the message hash to avoid this vulnerability. This deterministic generation is
defined by the standard algorithm in RFC 6979 (Pornin, 2013). Note that using
alternative nonce generation should not be detectable. In case the nonce is
deterministically generated, it should be indistinguishable from what a random
and uniform generator can give. In the white-box context, it is impractical to
use an external random number generator (RNG) since such an external RNG
can be easily detected and disabled by the adversary.

8.2. Simple Power Analysis
This targets to exploit the vulnerability in the scalar point multiplication. A
Simple Power Analysis (SPA) attack (P. Kocher et al., 1998) is based on the
observation that power consumed by doubling operation is distinguishable to
adding operation. In the case of using the double-and-add algorithm to perform
an elliptic curve point multiplication, the bits of the nonce k is revealed by this
method. Only one side-channel trace is enough to perform this attack.

Countermeasure
In order to be resistant against SPA, we prevent attackers from drawing a
conclusion about the bit sequence of key based on power consumption by avoid
branch instructions. Double-and-Add-Always method described in algorithm
5 or Montgomery Ladder method described in algorithm 3 can be used as a
countermeasure against this attack.

1Android Security Vulnerability: https://bitcoin.org/en/alert/2013-08-11-android
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Algorithm 5: Left-to-Right Double-and-Add-Always
Input: point P , secret d = (dn−1, ..., d0)2
Output: Q = dP

1 Q[0]← P
2 for i = n− 2 down to 0 do
3 Q[0]← 2Q
4 Q[1]← Q[0] + P
5 Q[0]← Q[di]
6 end
7 Return Q[0]

8.3. Correlation Power Analysis
Correlation Power Analysis (CPA) was introduced by Brier, Clavier and Olivier
(Brier et al., 2004) based on the well known Differential Power Analysis (P. C.
Kocher et al., 1999). This attack uses the known plaintext and the guessed
subkey to calculate the hypothesis power consumption. Then it correlates
the actual power consumption and the hypothesis one by Pearson correlation
coefficient and chooses the subkey giving the highest correlation.

Considering the manipulated data D and a reference state R, the power
consumption is supposed to be linear with the Hamming distance H(D⊕R).
Let W be the hypothesis power consumption, we have a model as follows:

W = αH(D⊕R) + β

Denote C as the set of power consumption curves. At the first step of the CPA
attack, we perform t executions with the input data m1, ...,mt and collect the
corresponding curves C = {C1, ...,Ct}. Secondly, we calculate the intermediate
value Di by the target function with mi and key hypothesis g. Then, we produce
the set of t Hamming distances: H = {H1, ...,Ht} where Hi = H(Di ⊕R).
Finally, we calculate the estimated correlation factor:

ρ̂C,H =
cov(C,H)
σCσH

=
t

∑
(CiHi)−

∑
Ci

∑
Hi√

t
∑
C2

i − (
∑
Ci)2

√
t

∑
H2

i − (
∑
Hi)2

(8.1)

The correlation factor ρ is maximum when the right guesses are computed.
By this method, an attacker can gradually recover the secret.

Applying CPA attack on ECDSA was proposed by Amiel, Feix and Villegas
(Amiel et al., 2007). It targets to exploit the vulnerability of the multiplication
r× d (mod n) in the step 4 of the ECDSA signature generation algorithm 4.
This attack aims to recover the secret d bit by bit. Algorithm 6 describes this
attack in more details. Note that f in step 7 indicates the transformation of a
number into Montgomery space if needed.
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Algorithm 6: CPA on ECDSA signature
Input: t signatures (r1, s1), ..., (rt, st), set of power curves C
Output: secret d = (dn−1dn−2...d1d0)2

1 d← 0
2 for j from n− 1 to 0 do
3 d̂← d+ bj

4 gmax = 0
5 ρmax = 0
6 for g from 0 to 1 do
7 H = {H1, ...,Ht} where Hi = H(f(d̂× ri)⊕R)
8 ρg = ˆρC,H
9 if |ρg| > |ρmax| then

10 gmax = g
11 ρmax = ρg

12 end
13 end
14 end
15 Return d

Countermeasure

In order to be resistant against CPA, we can use a randomisation of the secret
proposed by Coron (Coron, 1999). At first, we select a random number l and
compute d′ = d+ l× n, where n is the order of the elliptic curve. In practice,
l can be a 20-bit number. Then, d′ is used to multiply with r instead of d as
before. This works since r × d′ = r × d (mod n). This countermeasure can
prevent this attack since d′ changes in each execution of the algorithm.

Since an external RNG can be easily detected and disabled by the powerful
adversary in the white-box context, the randomness in a white-box implementa-
tion must be pseudorandomly generated from a single input plaintext. In other
words, the pseudorandom number generator (PRNG) is seeded by the input
plaintext. As stated in (Wang, 2020), there are some security properties that a
PRNG should fulfill in the white-box setting:

• Pseudorandomness: the output of the PRNG should be difficult to distin-
guish from a true randomness.

• Obscurity: we must keep secret the design of the PRNG.
• Obfuscation: the PRNG should be mixed with other instructions of the

white-box implementation so that it is difficult to distinguish the output
of the PRNG from other intermediate values.
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8.4. Differential Computation Analysis
Differential Computation Analysis (DCA) (Bos et al., 2016) is a counterpart
of the DPA attack (P. C. Kocher et al., 1999). Instead of using the power
consumption traces, DCA performs attack based on software execution traces
which contain information about the memory addresses being accessed. We
can consider DCA as a variant of DPA specialised for implementations in the
white-box context. The steps of this attack are outlined as follows:

• Step 1: Trace a single execution of the program with an arbitrary plaintext
and record all accessed address and data during the execution.

• Step 2: Visualise the trace obtained by step 1 to understand where the
block cipher is being used and determine which cryptographic algorithm
is implemented by counting the number of repetitive patterns.

• Step 3: Record multiple traces with random plaintexts, optionally limit
the scope of the recording activity to the first round or last round.

• Step 4: Serialise values (usually bytes) in the traces recorded in step 3
into vectors of ones and zeros. This step is similar to the classical hardware
setup in DPA, named memory transfers.

• Step 5: Use regular DPA tools to extract the key.

In WhibOx 2019 workshop, Vinet introduced the attack on ECDSA by
applying DCA (Vinet, 2019). The objective is to recover the secret d based on
the target operation r× d on the step 4 of the algorithm 4. In this attack, we
guess byte by byte starting from the least significant one. As an example, the
figure 8.1 shows the steps of DCA attack on ECDSA. This example supposes
r = (r3r2r1r0)8 and d = (d3d2d1d0)8. At the first step (figure 8.1a), we guess d0
and calculate the intermediate value c0 = r0× d0 (mod 28). Then, we correlate
c0 with the traces to find the best candidates for d0. In the next step (figure
8.1b), we guess d1 and combine with the best candidates of d0 to calculate the
intermediate value c1c0 = r1r0 × d1d0 (mod 216), and so on.

a) Guess d0 and correlate 8 bits b) Guess d1 and correlate 16 bits

Figure 8.1.: Recover key of ECDSA by DCA attack

Countermeasure
We notice that in attack targets on the multiplication r × d similar to the
previous attack. Therefore, in order to be resistant against DCA, we can bind
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the actual key d. As the countermeasure we have proposed for CPA, we can use
a randomisation of the secret (Coron, 1999). By this method, d′ is computed
in the multiplication with r instead of d, and hence the vulnerability of this
multiplication is avoided.
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9. Conclusion and Future Work
In this internship, we have designed and developed a cryptocurrency wallet
application on Android platform with the considerations of privacy and security.
Our wallet supports two main functionalities with Bitcoin and Ethereum: (1)
sending coins from an user’s account to another account by creating new
transactions and broadcasting them to the decentralised network, and (2)
receiving coins sent by others to an user’s account. This wallet also adapts the
standards of Bitcoin and Ethereum communities to generate and manage the
key structure. Moreover, we concentrated on solving the security problem in
the most vulnerable parts of a cryptocurrency wallet: key storage and ECDSA
signature. Our solution is to utilise white-box implementations for AES and
ECDSA to protect secret keys on an open environment such as smartphones.
The white-box implementations include the token generator running on a
trusted server and the ECDSA signature used to sign transactions. A token
securely containing an ECDSA secret key and generated by a server can only
be operated by the corresponding white-box ECDSA signer. Besides, we also
analysed some popular attacks on ECDSA and their countermeasures.

Future Work: Regarding the functionalities of our wallet application, it cur-
rently enables spending coins in the testing networks of Bitcoin and Ethereum,
namely, Bitcoin Testnet3 and Ethereum Ropsten, respectively. To make it work
in the main networks, we have to modify the fields indicating the type of the
targeted network in the address and key constructions. Additionally, the wallet
is relying on third-party APIs to interact with the decentralised networks. This
limits the number of requests per hour and sometimes causes unexpected errors.
Ideally, we can set up our application to become a node in the decentralised
network. Doing so requires many complicated configurations.

Regarding the white-box cryptography, there does not exist an ideal white-
box implementation in reality so far. In industry, people try to protect their
white-box implementations by mixing different countermeasures and obfusca-
tion techniques, hiding their designs and changing them frequently. We have
studied some countermeasures to this aim, however, achieving good white-box
implementations to integrate to this project is still a challenge.
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ouvertes.fr/tel-02953586. (Cit. on p. 53)

Wuille, P. (2013). Hierarchical deterministic wallets [https ://github.com/
bitcoin/bips/blob/master/bip-0032.mediawiki]. (Cit. on p. 14).

58

https://doi.org/10.1109/ICICT.2017.8320163
https://doi.org/10.1109/ICICT.2017.8320163
https://doi.org/10.1007/s102070100002
https://doi.org/10.1007/s102070100002
http://www.cryptography.com/dpa/technical
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
https://github.com/bitcoin/bips/blob/master/bip-0044.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0044.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
https://doi.org/10.17487/RFC6979
https://doi.org/10.17487/RFC6979
https://www.cryptoexperts.com/whibox2019/slides-whibox2019/Guillaume_Vinet-optimize_trace.pdf
https://www.cryptoexperts.com/whibox2019/slides-whibox2019/Guillaume_Vinet-optimize_trace.pdf
https://tel.archives-ouvertes.fr/tel-02953586
https://tel.archives-ouvertes.fr/tel-02953586
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki


Appendix A.

APIs used in the project
??

A.1. Bitcoin
• Transaction fee (GET):

1 https :// bitcoinfees .earn.com/api/v1/fees/ recommended

• Address information (GET):
1 https :// api. blockcypher .com/v1/btc/test3/addrs/<address >
2 https :// api. blockchair .com/ bitcoin / testnet / dashboards /

address /<address >

• Address UTXO (GET):
1 https :// api. blockcypher .com/v1/btc/test3/addrs/<address >?

includeScript =true& unspentOnly =true
2 https :// chain.so/api/v2/ get_tx_unspent / BTCTEST /<address >

• Broadcast transaction (POST):
1 https :// api. blockcypher .com/v1/btc/test3/txs/push
2 {
3 "tx": "< transaction >"
4 }
5 https :// chain.so/api/v2/ send_tx / BTCTEST /
6 {
7 " tx_hex ": "< transaction >"
8 }

A.2. Ethereum
• Transaction fee (GET):

1 https :// ethgasstation .info/api/ ethgasAPI .json?api -key=<key
token >

• Address Information (GET):
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1 https :// api - ropsten . etherscan .io/api? module = account & action
= txlist & address =<address >& startblock =0& endblock
=99999999& sort=asc& apikey =<apikey >

• Broadcast transaction (POST):
1 https :// ropsten . infura .io/v3/<key token >
2 {
3 " jsonrpc ": "2.0" ,
4 " method ": " eth_sendRawTransaction ",
5 " params ": [< transaction >]
6 "id": 1
7 }

A.3. Exchange Price
1 https :// min -api. cryptocompare .com/data/price?fsym=BTC&tsyms=EUR
2 https :// min -api. cryptocompare .com/data/price?fsym=ETH&tsyms=EUR
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Appendix B.

Serialisation

B.1. Extended Key
The serialisation of an extended key has to consist of the fields shown in table
B.1.

No. Field Length
(byte) Description

1 version 4
This field indicates the type of networks. For
instance, 0x0488b21e is for public keys on
Bitcoin mainnet.

2 depth 1 This field indicates the depth of the current
node in the tree structure BIP-44

3 fingerprint 4 This is four bytes checksum taken from the
hash of the parent key.

4 chaincode 32 This is 32 bytes of chaincode

5 key 33

The first byte is 0x00 if this is an extended
private key. For an extended public key, it
can either 0x02 if its y-coordinate is even or
0x03 if its y-coordinate is odd.

6 checksum 4

The byte array of five fields above is put into
a double-hash SHA256 function. Then we
check the first four bytes of the result as the
checksum.

Table B.1.: Serialisation of an extended key

B.2. Bitcoin Transaction
The serialisation of a Bitcoin transaction has to include the fields shown in table
B.2. Note that a variable length is calculated by the implementation (Java) in
the listing B.1.
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No. Field Length (byte) Description
1 version 4 Version 1 (constant)
2 vin size variable Calculated by listing B.1
3 vin list vin size See table B.3
4 vout size variable Calculated by listing B.1
5 vout list vout size See table B.4
6 locktime 4 Set to be 0 (deprecated)

Table B.2.: Serialisation of a Bitcoin transaction

No. Field Length (byte) Description
1 txid 32 Transaction identifier

2 vout 4 Position of the UTXO in the
vout list

3 scriptSig size variable Calculated by listing B.1

4 scriptSig scriptSig size This consists of the signature and
the public key of a sender

5 sequence 4 fdffffff (constant, deprecated)

Table B.3.: Serialisation of an input of vin list

No. Field Length (byte) Description
1 value 8 Number of satoshi

2 scriptPubKey
size variable Calculated by listing B.1

3 scriptPubKey scriptPubKey
size

This consists of some opcodes
and the public key hash of a
receiver

Table B.4.: Serialization of an output of vout list

1 public static byte[] fromBigIntToBytesReverse(BigInteger num, int size){
2 byte[] bytes = new byte[size];
3 for (int i=0; i<size; i++){
4 bytes[i] = (byte) num.mod(B256).intValue();
5 num = num.divide(B256);
6 }
7 return bytes;
8 }
9

10 public byte[] numToVarInt(BigInteger num){
11 if (num.compareTo(new BigInteger("253")) < 0){
12 byte[] res = new byte[1];
13 res[0] = (byte) num.intValue();
14 return res;
15 }
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16 if (num.compareTo(new BigInteger("65536")) < 0) {
17 byte[] res = new byte[3];
18 res[0] = (byte) 253;
19 System.arraycopy(fromBigIntToBytesReverse(num, 2), 0, res, 1, 2);
20 return res;
21 }
22 if (num.compareTo(new BigInteger("4294967296")) < 0){
23 byte[] res = new byte[5];
24 res[0] = (byte) 254;
25 System.arraycopy(fromBigIntToBytesReverse(num, 4), 0, res, 1, 4);
26 return res;
27 }
28 else {
29 byte[] res = new byte[9];
30 res[0] = (byte) 255;
31 System.arraycopy(fromBigIntToBytesReverse(num, 8), 0, res, 1, 8);
32 return res;
33 }
34 }

Listing B.1: Convert a number to a variable-length byte array

B.3. Ethereum Transaction
The serialisation of a Bitcoin transaction has to include the fields shown in
table B.5. Note that Ethereum uses Recursive Length Prefix (RLP) to encode
data. The implementation (Java) of this encoding algorithm is showns in listing
B.2.

No. Field Length (byte) Description
1 nonce RLP Calculated by listing B.2
2 gasPrice RLP Calculated by listing B.2
3 gasLimit RLP Calculated by listing B.2
4 to RLP Calculated by listing B.2
5 value RLP Calculated by listing B.2
6 data RLP Calculated by listing B.2
7 v RLP Calculated by listing B.2
8 r RLP Calculated by listing B.2
9 s RLP Calculated by listing B.2

Table B.5.: Serialisation of a Ethereum transaction

1 private static final int EMPTY_MARK = 128;
2 private static final int TINY_SIZE = 55;
3 private static final int BASE_PREFIX = EMPTY_MARK + TINY_SIZE + 1;
4

5 public static byte[] rlp_encode(byte[] bytes) {
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6 if (bytes == null || bytes.length == 0)
7 return emptyEncoding;
8

9 if (bytes.length == 1 && (bytes[0] & 0x80) == 0)
10 return bytes;
11

12 if (bytes.length <= TINY_SIZE) {
13 byte[] encoded = new byte[1 + bytes.length];
14 encoded[0] = (byte)(EMPTY_MARK + bytes.length);
15 System.arraycopy(bytes, 0, encoded, 1, bytes.length);
16 return encoded;
17 }
18

19 byte[] blength = lengthToBytes(bytes.length);
20 byte[] encoded = new byte[1 + blength.length + bytes.length];
21 encoded[0] = (byte) (BASE_PREFIX + blength.length - 1);
22 System.arraycopy(blength, 0, encoded, 1, blength.length);
23 System.arraycopy(bytes, 0, encoded, 1 + blength.length, bytes.length);
24

25 return encoded;
26 }

Listing B.2: RLP encoding implementation
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