Natural Resistance of Threshold Implementations
to Statistical (Ineffective) Fault Attacks

Viet Sang Nguyen, Vincent Grosso, and Pierre-Louis Cayrel

Laboratoire Hubert Curien, Université Jean Monnet, Saint-Etienne 42100, France
viet.sang.nguyenQuniv-st-etienne.fr
vincent.grossoQuniv-st-etienne.fr
pierre.louis.cayrel@univ-st-etienne.fr

Abstract. Fault attacks have been a significant threat against cryp-
tographic implementations. Among many attack techniques, Statistical
Fault Attacks (SFA) and Statistical Ineffective Fault Attacks (SIFA) have
been shown to be very strong as they exploit only the cipher outputs.
Protecting implementations against SFA and SIFA requires countermea-
sures such as spatial, temporal, or informational redundancy mecha-
nisms. These countermeasures always come along with a high cost of
latency or area. Moreover, this cost is even higher for SIFA protection
as it additionally requires a special technique to propagate the fault to
the output.

In this work, we propose a design for threshold implementations (TI) that
resists SFA and SIFA attacks in a relatively relaxed adversary model.
Our approach significantly reduces the cost required by existing fault
countermeasures. For SFA,| we show that TI alone is sufficient to provide
the resistance without the need for expensive redundancy mechanisms.
For SIFA, we show that T1 is sufficiently efficient to provide the resistance
when combined with a basic redundancy. Furthermore, we prove that TT
conforming to our design is composable, enabling the construction of a
full cipher that is resistant to both SFA and SIFA. Finally, we validate
our approach with fault simulations on a proof-of-concept PRESENT
implementation.

Keywords: Threshold Implementations - Fault Attacks - SFA - SIFA.

1 Introduction

Cryptographic algorithms are typically proven to be secure in a theoretical black-
box model, where the adversary has access to a set of inputs and outputs. How-
ever, in the real world, these algorithms are widely deployed in embedded de-
vices, such as smart cards or IoT devices, where physical attacks are a significant
threat. These attacks can be categorized into two groups: (1) passive attacks,
which exploit observable leakages, and (2) active attacks, which interfere with
the execution of the algorithms.

2 Viet Sang Nguyen, Vincent Grosso, and Pierre-Louis Cayrel

Side-Channel Analysis (SCA) is a well-known passive attack technique that
exploits physical execution characteristics such as timing [Koc96], power con-
sumption [KJJ99], electromagnetic radations [GMOO01]. The underlying princi-
ple of SCA is the correlation between the observed leakages and an internal
variable containing sensitive data related to the secret key. Many protection
schemes have been proposed to counteract SCA attacks. Among those, mask-
ing [GP99,CJRRI9,ISW03,RBN*15GMK16] is the most prominent counter-
measure. The idea behind of masking is to harness the principle of secret sharing
[Sha79] in order to split the sensitive data into several shares such that any com-
bination of less than a chosen number of shares is independent of the sensitive
data. Threshold Implementations (TI), proposed by Nikova et al. [NRRO6], is a
well-studied masking scheme for hardware computation, that follows the strat-
egy of multi-party computation. In TI, the computation is split into parts, called
component functions (corresponding to parties), that are non-complete, i.e., in-
dependent of at least one input share. Nikova et al. proved that the first-order
TT is secure for digital circuits even in the presence of glitches. Later, Sasdrich
et al. [SBM18]| applied the same concept for software implementations.

Fault Injection Analysis (FIA) is an active attack technique that requires to
disrupt the execution of implementations through e.g. voltage supply [ZDCT13],
clock glitching [DEG T 18], electromagnetic field [DDRT12], or focused laser beams
[SA03]. The underlying principle of FIA is the propagation of faults from an in-
ternal variable related to the secret key to the output. The idea of FIA was first
introduced by Boneh et al. [BDL97] with an attack on RSA. Later, Biham and
Shamir proposed the Differential Fault Analysis (DFA) [BS97], which has be-
come the most studied fault-based attack and opened the door for many works,
e.g., [BS03,DLV03,Gir03,MSS06]. The core idea of these attacks is to recover
the secret from differential equations constructed from a few pairs of correct and
faulty outputs. A requirement for DFA-like attacks is that the adversary has the
ability to encrypt the same plaintext twice, once with the presence of the faults
and once without. Fuhr et al. [FJLT13] then relaxed this requirement with the
Statistical Fault Analysis (SFA). This attack only requires access to the faulty
ciphertexts and exploits the non-uniform distribution of an intermediate vari-
able caused by the faults. SFA is also shown as a very effective fault attack by
Dobraunig et al. [DEKT16] with practical applications on nonce-based authen-
ticated encryption schemes. A common method to counteract fault attacks is
to detect faults by employing temporal or spatial redundancy mechanisms. The
basic principle is to repeat the computation multiple times and compare their
outputs. However, redundancy-based countermeasures cannot prevent the clever
idea of Statistical Ineffective Fault Analysis (SIFA) proposed by Dobraunig et
al. [DEK™ 18|, which exploits only the correct outputs. This means that STFA
still works in the implementations returning only correct outputs as the result of
applying some error-detection schemes. In other words, error-detection schemes
“help” to filter the outputs and select only the correct ones for the powerful STFA
attack.

Natural Resistance of TI to S(I)FA 3

Protecting implementations against SFA is trivial. Because this attack ex-
ploits faulty outputs, common fault detection schemes using temporal or spatial
redundancy mechanisms are sufficiently efficient to prevent the threat of SFA.
However, this approach always comes along with a cost of latency or area. For
example, executing the implementation twice and verifying the two outputs as a
temporal redundancy doubles the response time. In fact, recent (costly) schemes
such as StaTl [DOT24|, ParTI [SMG16], M&M [DANT18|, CAPA [RDB*18],
whose concept is to combine redundancy and masking to thwart SCA and FIA,
also provide the protection against SFA.

In contrast, protecting implementations against SIFA is not trivial. Exploit-
ing solely correct outputs, this attack can overcome most of the countermeasures
based on redundancy combined with masking. To tackle this problem, Daemen
et al. [DDE*20| proposed the idea of ensuring the propagation of a fault to the
output using reversible operations. The fault is then detected at the output by a
redundancy method. However, as noted by the authors [DDE™20], the implemen-
tation cost can be a bottleneck of this countermeasure due to the redundancy for
fault detection. Aiming to improve the efficiency of this approach, Dhooghe et al.
[DOT24] have recently proposed a countermeasure based on TI and information
redundancy, called StaTI. This countermeasure ensures the fault propagation on
TI, then detects the fault at the output thanks to a linear decoding technique.
Another approach relying on duplication-based countermeasures has been pro-
posed by Baksi et al. [BKK™20]. However, their protection is limited to detecting
stuck-at faults.

Contributions. This paper investigates the resistance of TI to SFA and SIFA.
We start by analyzing the root cause that led to the success of applying SFA
and SIFA attacks on TI by Dobraunig et al. [DEG'18]. In particular, we show
that their fault model allows a fault attacker to break the non-completeness
by injecting a fault into multiple component functions. Understanding this root
cause, we propose a design for TI that resists SFA and SIFA attacks in a multiple-
faults adversary model, regardless of the types of the faults (e.g., bit flips, stuck-
at-0 faults, stuck-at-1 faults, random faults). More specifically, we show that TI
with extra caution implementation can achieve several levels of security:

— TI alone can provide resistance to SFA without the need for costly redun-
dancy mechanisms as many schemes in the literature.

— TI, combined with a basic countermeasure such as spatial or temporal redun-
dancy, is sufficiently efficient to provide resistance to SIFA. This approach is
simpler than the existing costly countermeasures specialized for SIFA pro-
tection, such as [DDE™20].

Furthermore, we show that TIs adhering to our design are composable, en-
abling us to build a complete cipher that is resistant to both SFA and SIFA. We
provide a proof-of-concept implementation of the PRESENT cipher and demon-
strate its resistance through fault simulation.

As a result of using first-order TI, any implementations based on our design
are inherently resistant to the first-order SCA, besides provides security against

4 Viet Sang Nguyen, Vincent Grosso, and Pierre-Louis Cayrel

SFA and SIFA. Nevertheless, we only focus on the resistance to SFA and SIFA
in this paper.

Outline. Section 2 provides the background knowledge about TI, SFA and SIFA.
Section 3 analyzes the root cause of SFA and SIFA attacks on TI. Section 4
presents the details of our design and the proofs of SFA and SIFA resistance.
Section 5 discusses the composition of TIs that conform to our design. Section 6
provides the proof-of-concept PRESENT implementation and the fault simula-
tion.

2 Preliminaries

In this section, we first introduce notation used in the the paper, then present
the notions of TI, SFA and SIFA.

2.1 Notation

In this paper, we consider the TT of an n-bit bijection f defined from Fg to F?,
where Fy denotes a finite field of characteristic 2. In this context, a bit is an
element of Fy. Lower-case characters (e.g., , a) are used to refer to elements
of the finite field F%, while upper-case characters (e.g., X, A) are used to refer
to stochastic variables. A bold character (e.g., X, a) is used to refer to a vector
of variables or values. The probability that the variable X takes the value z is
denoted by Pr[X = z]. The bitwise addition and multiplication of the two values
x and y, designated as the XOR and the AND operations, are represented by the
symbols x @y and zy. The Boolean logical and, or and negation are represented
by the symbols V, A and —, respectively.

To implement the function A = f(X) from F} to F} in TI, it is first necessary
to use Boolean masking to split the variable X € 3 into s shares. These shares
are denoted by X;,..., X, € Fy, such that the XOR sum of these shares is equal
to the variable itself:

X=X19...0 X,

We call X an unshared variable. The process of decoding the shares Xi,..., X,
to obtain the unshared variable X is referred to as unmasking. In this paper, we
use a subscript j is used to denote the j-th share X, with j € [1, s]. Furthermore,
a superscript i is employed to denote the i-th bit X, for i € [1,7n], of the n-bit
variable X. Thus, X; refers to the j-th share of the i-th bit of X. The vector
containing all s shares of X is denoted by X = (Xj);e[1,5). We also denote by
X the vector of all the shares, but the j-th share, of all n bits, X5 = X\ {X}.

2.2 Threshold implementations (TI)

The TI of the bijection A = f(X), is represented by the shared function, de-
noted A = f(X). This shared function is a vector of component functions £ =

Natural Resistance of TI to S(I)FA 5

(f1,--+, fs). The shared functions take as input the input shares X = (X;) e1,4]
and produce as output the output shares A = (A;j);jeq,s)- The shared function
f is constructed in such a way that (for the first-order TI) every component
function f; is independent of at least one share (usually the j-th share). Fig-
ure 1 depicts the architecture of a first-order TI with 3 shares. As introduced
by Nikova et al. [NRRO6], the construction of a TI must satisfy the following
properties: correctness, non-completeness, and uniformity.

N
U
VN

Fig. 1: Example of a first-order threshold implementation with s = 3 shares. The
component function f; is independent of the j-th shares of all input bits X;.

The first property, correctness, ensures that the unmasking of the output
shares will yield the intended unshared output.

Property 1 (Correctness [NRR06]). For any « € Fy and any vector of shares
X = (2j)jen,s) such that x =), x;, the output shares a = (a;);jep,s of the
threshold implementation a = f(x) must satisfy a = >, a;, where a = f(x).

The second property, (first-order) non-completeness, ensures that each com-
ponent function is independent of at least one of the input shares.

Property 2 (First-order non-completeness [NRR06]). A threshold implementa-
tion f achieves non-completeness if each component function f; is independent
of at least one input share, resulting in each output share being independent of
at least one input share.

The third property, uniformity, includes the definition of uniform sharing
(Property 3) and the definition of uniform sharing of a function (Property 4).
These definitions require the notation for the set of all valid sharings of =, denoted

by Sh(z). The uniform sharing property ensures a sharing vector of z is uniformly
distributed over Sh(x).

Property 3 (Uniform sharing [NRRO6]). A sharing X is uniform if and only if

1

Pr[X = x|x € Sh(z)] = Sh(o)|

6 Viet Sang Nguyen, Vincent Grosso, and Pierre-Louis Cayrel

Let us suppose that the input sharing of a shared function is uniformly dis-
tributed (that means Property 3 is satisfied). It then follows that the output
sharing of this function is uniform. Thanks to this property, we can compose
two shared functions without refreshing the shares.

Property 4 (Uniformity or Balancedness [NRR06]). The shared function f is
uniform if and only if Vz,a € F} with a = f(z),Va € Sh(a):

[{x € Sh(z)|f(x) = a}| = 1.

In other words, if f is a bijection then f is also a bijection.

2.3 Statistical Fault Attacks (SFA)

The concept of Statistical Fault Attacks (SFA) was initially proposed by Fuhr et
al. [FJLT13] with a demonstration of the Advanced Encryption Standard (AES).
The key concept of SFA is to induce a non-uniform distribution of a byte before
the MixColumns operation in the 9th round. The distribution of the selected
byte is modified by faults as depicted in Figure 9 (in Section C). Consequently,
the adversary only requires to have access to the faulty ciphertexts in order
to recover the key. In the case that a set of faulty ciphertexts is available, the
adversary needs to predict 4 bytes of the last round key and then perform a
backward computation to predict the value of the faulted position. It should
be noted that guessing the 9th round key is not necessary, since it does not
affect the non-uniformity distribution of the selected byte (the 9th round key
can be regarded as an addition with an unknown constant, therefore it does
not impact the distribution). If a sufficient number of ciphertexts are provided,
the distance between the distribution at the faulted byte corresponding to the
correct key guess and the uniform distribution will be the highest. Consequently,
it is possible to distinguish between a correct and an incorrect key guess.

The approach of SFA is noteworthy for its divergence from the methodology
of Differential Fault Attacks (DFA), which necessitates the encryption of identi-
cal plaintext on two separate occasions. However, the main disadvantage of SFA
is its reliance on faulty ciphertexts. This means that cryptographic implemen-
tations with countermeasures that prevent the release of faulty ciphertexts for
DFA can also be resistant to SFA. Therefore, the potential danger posed by SFA
to these protected implementations is not considerable.

2.4 Statistical Ineffective Fault Attacks (SIFA)

Since its publication by Dobraunig et al. [DEK'18] the concept of Statistical
Ineffective Fault Attacks (SIFA) has emerged as a particularly potent form of
fault attack. In contrast to SFA, SIFA exploits only correct ciphertexts resulting
from the failure of the faults to be effective, that is when the faults are success-
fully injected but do not render the ciphertexts faulty. This concept was derived
from the interesting observation made by the authors that the ineffective faults

Natural Resistance of TI to S(I)FA 7

result in a non-uniform distribution of an intermediate variable. Table 1 provides
an illustrative example of the distribution table for a stuck-at-0 fault on 2-bit
values. The diagonal of red values represents the non-uniform distribution of
ineffective faults (x = /).

.'L‘/
00 01 10 11
00 1 0 0 0
. 01 1 0 0 0
10 1 0 0 0
11 1 0 0 0

Table 1: Fault distribution table for 2-bit stuck-at-0 fault model [DEK'18]. The
probability that any value x becomes 2’ = 00 by a stuck-at-0 fault is 1 (first
column). The probability that any value x becomes 2’ # 00 by a stuck-at-0 fault
is 0 (other columns).

As it relies solely on the correct ciphertexts, SIFA remains applicable in sce-
narios where redundancy-based countermeasures are employed. In the following
analysis, we consider an AES with a classical temporal redundancy, e.g., the
computation is run twice and the two outputs are compared to prevent the re-
lease of faulty ciphertexts. Let us consider the scenario in which an attacker
injects stuck-at-0 faults, into a byte before MixColumns in the 9th round (simi-
lar to Figure 9) of one of the two redundant computations. The countermeasure
will filter and release solely correct ciphertexts. Given this filtered set of cor-
rect ciphertexts, the attacker performs a key recovery as in SFA, i.e., guessing 4
bytes of the last round key and computing backward to the faulted position. The
correct key guess will correspond to the furthest distance from the distribution
of the faulted byte to the uniform distribution.

Dobraunig et al. [DEG*18| subsequently applied SIFA to protected imple-
mentations using masking and error detection. In particular, the authors demon-
strated that when a single share during the masked computation of an S-box is
faulted, a non-uniform distribution of an unshared intermediate variable can
be exploited by SIFA. Furthermore, threshold implementations, which will be
thoroughly investigated in the following sections, are also vulnerable to SIFA, as
shown in [DEG™T18].

3 SFA and SIFA on threshold implementations

This section presents a detailed analysis of the root cause of SFA and SIFA
attacks by Dobraunig et al. [DEG*18] on the threshold implementation (TI) of
the 5-bit Keccak S-box with a single fault. We begin with a brief introduction
about the TI of the Keccak S-box. We then analyze the effect of the single
fault and calculate the probability of each unshared input and output value

8 Viet Sang Nguyen, Vincent Grosso, and Pierre-Louis Cayrel

in the distribution resulting from the fault. This detailed calculation helps to
understand the primary reason why SFA and SIFA are applicable and inspires
the design of the implementation resisting SFA and SIFA in the following section.

3.1 Single fault on TI of Keccak S-box

Keccak is a versatile cryptographic function with variable-length input and
arbitrary-length output based on the sponge construction [Kecl5|. The core of
the Keccak S-box S is a quadratic mapping:

A X (X 1) X2,

For the 5-bit S-box that we consider hereafter, i € [1,5], where X* denotes
the i-th input bit and A? denotes the i-th output bit, X' and A! are the least
significant bits. The indices ¢ + 1 and @ + 2 are implicitly cyclic in [1,5]. The
lookup table of S is given in Table 2.

r 0123456789 abcde £1011121314151617 1819 1a 1b 1c 1d 1le 1f
S(z)0912b5c16fa3181d41e71415 6 171110 2 13 1alb 8 19 1d 1c e 1f

Table 2: Lookup table of 5-bit Keccak S-box.

In [BDNT13], Bilgin et al. propose a first-order uniform 4-share threshold
implementation of the Keccak S-box. Let X7, X3, X35 and X} be 4 shares of X".
The 4 shares Af, A%, A%, A} of each output bit A* are computed as follows.

For:=1,2,3,5:

Ay =X; 0 X e (X o X3 e Xt (X o X3 e Xi7)
A= XE o X2 @ (X (X2 @ X)) @ XIH2(XiT! @ XIt1) @ X+l Xi+2)
Aé — Xﬁi o) Xi+2 P (X{+1X;+2 P X{+2X;+1)
A = Xj o X2
(1)

For 7 = 4:

Al=Xs0XioX;o X0 (XS XS X)) (X, X;0 X))
Ay = X3 0 X1 & (X7 (X3 © X;) @ X; (X5 © X7) © X7 X7)

Ay =X e (X[X; © X1 X3)

Ap=X|

(2)

Dobraunig et al. [DEG™T18] showed that it is sufficient to inject a fault into the
value of a single input share during the execution of the above implementation is
sufficient to mount SIFA and SFA. More specifically, a stuck-at-0 fault is injected

Natural Resistance of TI to S(I)FA 9

into the share X{ before the computation of the four shares of the output bit A®
are computed, while the shares of the other output bits are computed correctly.
We highlight in red the influence of the faulted variable X{ as described in
Equation 3.

A=XloXlo(XieX;0X)(Xia X2 X))
A=X0Xi0 (X[(X;0 X)) D XP(X; 0 X)) DX X?)
A3 =X 0 X2 (X1 X3 X2X))

A =X X}

(3)

As a consequence, the following AND operations are affected: X7 (X2 @ X3)
and X{X? in the computation of A3, and X]X2 in the computation of Aj.
Since the first and the second operations are both in the computation of A3,
we obtain X{(X? ® X2 @ X?) by factorizing them. The fault is called effective
when it induces a bit flip on the unshared output bit A% = A} & A3 & A3 @ AJ.
This occurs if and only if either A3 or A3 is flipped by the fault. Note that if
both shares A3 and Aj are flipped, there is no effect on the unshared output bit
A5 Dbecause these two flips will cancel each other out in the unmasking of A°.
Hence, we can combine X{ (X7 @® X3 & X7) (in A3) and X{XZ (in A3) into a
single term expressing the influence of the fault:

X{(Xio X Xio X)) =X X2 (4)

Equation 4 implies that all the shares of the input bit X? are affected by the
fault. This breaks the non-completeness property of threshold implementations
and thus leads to the non-uniform distribution of the unshared S-box input and
output (Figure 3 for SIFA and Figure 2 for SFA). We now analyze Equation 4
in more detail to see how the fault affects the output bit A°. Let us first formally
define the effectiveness of the fault.

Definition 1 (Effectiveness of fault(s)). Fault(s) induced into the computa-
tion of a shared function A = £(X) are said to be effective if the unshared output
A, where A is unmasked from A, is changed because of the fault(s). Otherwise,
the fault(s) are said to be ineffective.

We consider the following possibilities:

(a) X{ = 0: the stuck-at-0 fault does not change the value of X{. No matter
what the value of X? is, the result of the AND operation X{X? is always 0.
Thus, the fault is ineffective.

(b) X} =1and X? = 0: despite the value of X; change from 1 to 0, the stuck-at-
0 fault does not change the result of the AND operation X{X? since X2 = 0.
Thus, the fault is ineffective.

(¢) X{ =1 and X? = 1: the stuck-at-0 fault changes the value of X from 1 to
0, and thus changes the result of the AND operation X{X? from 1 to 0. As
a result, the unshared output bit A% is flipped. Thus, the fault is effective.

10 Viet Sang Nguyen, Vincent Grosso, and Pierre-Louis Cayrel

Notice that the fault is effective only in the case (¢). Let £ denote the Boolean
expression representing the effectiveness of the fault, such that £ = 1 when the
fault is effective and £ = 0 otherwise. Equation 5 is the Boolean expression for
the fault that we are considering. To show that the induced stuck-at-0 fault
results in a non-uniform distribution for the unshared input and output, we will
calculate the probability of occurrence for each input and output value. This
calculation also helps to ease the proofs for our design in Section 4.

€= X{ AX? (5)

Application of SFA. Figure 2 shows the distribution of the unshared input
and output values induced by the fault. In SFA, both correct outputs and faulty
outputs are taken into account, i.e., there is no filter to eliminate faulty outputs.
Since the fault occurs in an intermediate computation, it does not affect the
uniformity of the input. This explains the uniform distribution of the unshared
input I in Figure 2.

0123456789abcdef101112131415161718191a1bicidlels
S 0 5 5
2SO | 5 o e [B B

[(J1562% [3.125% [4.688%

Fig. 2: Distribution of input I and output O for SFA on 4-share KECCAK S-box.

We now focus on the distribution of the unshared output O. Recall that the
fault is effective when € = X2 A X{ = 1, or equivalently, X? = 1 and X{ = 1.
We split the input values into two sets, Z and Z’, including the values with the
second bit X? = 0 and X? = 1, respectively.

7=1{0,1,4,5,8,9,c,d,10,11,14,15,18,19,1c,1d}
7' ={2,3,6,7,a,b,e,f,12,13,16,17,1a,1b,1e,1f}

The two output sets corresponding to these input sets are:

0 =1{0,9,5,c,a,3,d,4,14,15,11,10,1a,1b,1d, 1c},
o= {12,vb,16,f,18,1,1e,7,6,17,2,13,8,19,e,1f}.

We continue to split O and O’ into O = O; U Oz and O’ = O] U O}, where:

0, ={0,4,5,a,c,d,10,14,15,1a,1c,1d}, O, = {3,9,11,1b},
0) ={2,12,6,16,7,17,8,18,f,1f ,e,le}, O, ={1,b,13,19}.
Recall that in case the fault is effective, the most significant output bit A°

will be flipped. Hence, the fault value can be denoted by ¢ = 10 and the change
of the output from A to A’ can be denoted by A’ = A @ e.

Natural Resistance of TI to S(I)FA 11

— For a € Of (X! = 1), if the fault is effective (X{ = 1), we have a’ = a® € €
O}. The value a changes to a’ and the value a’ changes back to a. Overall,
the probability does not change

Pr[A = a,a € O}] =27° = 0.03125.

— For a € O} (X! = 1), if the fault is effective (X} = 1), then a’ =a®e € Oy
(a becomes a value in Og). This value a does not change when the fault is
ineffective, i.e., when £ = X2AX{ = 0, or equivalently, X{ = 0 since X' =1
for a € 0. Thus, by the independence between A and X7i:

PrlA=a,a € O)] =Pr[A=aN&=0]
=Pr[A=anX] =0]
=275 %271 =0.015625.

— For a € Oy (X! = 0), the fault is ineffective (¢ = X! A X} = 0). Note that
some values in O} become the values in O3 because of the fault. Thus:

Pr[A=a,a € Os] =27° + (27° = Pr[A = a,a € 0}))
= 0.03125 4 (0.03125 — 0.015625)
= 0.046875.

— For a € O; (X' = 0), the fault is ineffective (¢ = X' A X = 0). The values
in this set are not influenced by the fault. Thus:

Pr[A=a,a € O1] =27° = 0.03125.

We have obtained the distribution as illustrated in Figure 2.

Application of SIFA. Figure 3 shows the distribution of the unshared input
and output values induced by the fault when it is ineffective (the case (¢), & = 1),
i.e., incorrect outputs are detected and eliminated by a redundancy. Intuitively,
we consider a truth table of 220 entries for all combinations of 20 shares for 5
input bits. One fourth entries (or 2'%) where X? = 1 and X{ = 1 are eliminated
from this table. Note that X2 = 1 means that the input of the S-box is in the set
{2,3,6,7,a,b,e,f,12,13,16,17,1a,1b,1e,1f} (illustrated by light gray cells
for I in Figure 3). This explains why the probability of each dark gray cell is
greater than the probability of each light gray cell for the input I.

For the output O in Figure 3, the probability of A = a is the same as prob-
ability of X = z if a = S(x) because the S-box is a permutation. For example,
Pr[A = 12] = Pr[X = 2] since §(2) = 12. Thus, knowing the distribution of the
input X, we can directly derive the distribution of the output A. We now focus
only on calculating Pr[X = z] for each x € [0, 1£f]. This probability in case the
fault is ineffective (£ = 0) can be calculated as:

Pr X =2zA&=0]
Pre = 0]

Pr[X = |6 = 0] = . (6)

12 Viet Sang Nguyen, Vincent Grosso, and Pierre-Louis Cayrel

01234567389 abcdef101112131415161718191albicildlelf

I RN RN ORI

o ORI NNCOERCO RO OO OO e
[12083% [l 4167%

SIFA

Fig. 3: Distribution of input I and output O for SIFA on 4-share Keccak S-box
(taken from [DEGT18]).

First, the probability that the fault is ineffective: Pr[=0] =1—-Pr[(= 1] =
1-PrX2A X! =1 =1-Pr[X2=1] x Pr[X} = 1] = 1 — 0.5 x 0.5 = 0.75 (by
the independence between X2 and X1). Second, to calculate Pr[X = 2 A ¢ = 0],
we consider the following cases:

— X? = 0: This is equivalent to z € {0,1,4,5,...,1c,1d} (illustrated by dark
gray cells for I in Figure 3). We have £ = X2 A X{ = 0 (always true), thus
PriX =2 A{=0]=Pr[X =2] =275,

— X? = 1: This is equivalent to = € {2,3,6,7,...,1e,1f} (illustrated by
light gray cells for I in Figure 3). We have ¢ = X2 A X{ = X1, thus Pr[X =
rAE=0=Pr[X =2 AX] =0 =275x2"1 =270 (by the independence
between X and X{).

Finally, Equation 6 can be evaluated and we obtain the distribution as illustrated
in Figure 3:

0.04167 for z € {0,1,4,5,...,1c,1d},
Pr[X =z[(=0] =
0.02083 for x € {2,3,6,7,...,1e,1£}.

3.2 Root cause

In the analysis on the Keccak S-box, a fault injected in a single share (X{) causes
an influence on all the shares (X7, X2, X2, X7) of the second input bit X2. It
can be said that the fault causes the non-completeness property of TI to be
broken (Property 2). This is the main reason for the non-uniform distributions
of the input and output (Figure 2 and Figure 3) that can be exploited by SFA
and SIFA.

Moreover, X{ is not the only choice for the fault injection. For instance,
injecting a stuck-at-0 fault into X? before the computation of the four shares of
the output bit A5 (Equation 3) also creates an influence on all the shares of the
input bit X!, and thus leads to non-uniform distributions of the S-box that are
vulnerable to SFA and SIFA.

The root cause behind the attack is the arrangement of the computation
order that allows a single fault to affect the computation of all the shares of an
output bit (A% in the example of Keccak). The non-completeness property is thus
no longer guaranteed because of the consequence of the fault. This root cause
not only holds for the case study of Keccak, but also holds for TI in general.

Natural Resistance of TI to S(I)FA 13

Let us take the 3-share TI of the 4-bit PRESENT S-box as another example
(its details of the TT computations are included in Section B). We arrange the
computation order as the root cause, i.e., a single fault can spread its influence to
the computation of all the shares of an output bit. More specifically, we assume
that a stuck-at-0 fault is induced into the share Y;* before the computation of
the 3 shares of the output bit A%. As expected, the distributions of the unshared
input and output are no longer uniform as illustrated in Figure 4, which means
that SFA and SIFA are applicable.

A=Y oY,V e VY 0 Yy
A=Y oY eIy ey (7)
A3 =Y o V'Y; oYY, o VY

HE -

123456789 abcdef
1 [
O[T O e

SFA

0123456789 abcdef

0
I O

[13.125% [4.6875% [6.25% M 9.375%

SIFA

Fig.4: Distribution of input I and output O for SFA and SIFA on 3-share
PRESENT S-box.

4 Resistance of threshold implementations

In Section 3, we have analyzed the root cause of exploitation using SFA and STFA
against unprotected and side-channel protected implementations. In this section,
we tackle this root cause and propose a design of threshold implementation that
is resistant to these attacks. We then formally prove the resistance of our design
against SFA and SIFA in a relatively relaxed adversary model.

4.1 Ouwur design

In Section 3, a single fault on one well-chosen share before the computation of
all shares of one unique output bit can break the non-completeness property.
Note that the computation of other output shares is not affected. In hardware,
this fault injection is possible in one of the following two scenarios: (1) there is a
wire containing faulted share before the computation of all shares of an output
bit and this wire is not used for the computation of shares of other output bits,
or (2) some gates are shared between the component functions so that the fault
can affect different shares of an output bit.

14 Viet Sang Nguyen, Vincent Grosso, and Pierre-Louis Cayrel

We consider the common realization using two register stages (also called
register-to-register function by Dhooghe et al. [DOT24]), one for the input X
and one for the output A, as in Figure 1. The first scenario does not make
sense since faulting one input share (in the input register) cannot limit the effect
to the computation of all shares of only one output bit, i.e., the computation
of other output shares is also affected. The second scenario, where some gates
are shared between the component functions, is more reasonable. Faulting these
gates may affect the computation of all shares of an output bit. In fact, Dhooghe
et al. [DOT24| prevented this possibility by assuming that no gate is shared
between the component functions and that the adversary is only able to fault
one gate. However, this assumption does not seem to correspond to the practice
when the TI is realized following the approach of Figure 1. In this approach,
the computation of TI is done in one cycle. This means that the component
functions are executed in parallel. If the adversary performs fault inductions via
clock glitching, the faults likely affect gates of different component functions at
the same time since their executions use the same clock. This could lead to a
violation of the non-completeness property.

Taking a different approach, we aim to provide a realization such that the
non-completeness property is maintained even in the presence of multiple faults.
Inspired by the time sharing technique of Kumar et al. [VDBT24|, we propose the
idea of temporally separating the processing of component functions in time in
order to guarantee the non-completeness property. Figure 5 depicts an example of
our design for 3-share TI. In this work, we consider an adversary who is capable of
injecting faults, regardless of fault model (e.g., stuck-at-0 fault, stuck-at-1 fault,
flipping fault, random fault, etc.), either into gates of a single component function
(Subsection 4.2) or into variables in a single register stage (Subsection 4.3). The
number of faults will be discussed later. We now formally define the goals to be
achieved for our design: the resistance to SFA and SIFA.

gk
I
N
& X fa
N
f Ay Ay
(VAN VAN

Fig.5: Our design with 3-shares TI (s = 3).

For SFA, both the correct and faulty outputs are taken into account. Thus,
there is no need for a countermeasure (e.g., spatial or temporal redundancy) to
filter the outputs. We will prove that a threshold implementation alone follow-
ing our design can be resistant to SFA attacks. This means that we allow the

Natural Resistance of TI to S(I)FA 15

adversary to collect the faulty outputs. This approach is different from other
protection schemes such as StaTT [DOT24], ParTI [SMG16], M&M [DANT1§],
etc., whose approach is to prevent the release of faulty outputs by redundancy
in order to protect the implementation against SFA attacks.

Definition 2 (SFA resistance). Let A = f(X) be the threshold implemen-
tation of a bijection that is prone to faults. This shared function f is said to
be SFA-resistant if both the correct and faulty (unfiltered) unshared input X,
and the correct and faulty (unfiltered) unshared output A, where X and A are
unmasked from the unfiltered X and A, are uniformly distributed.

For SIFA we only consider correct outputs. Therefore, it needs a filter at
the output to detect if the fault is effective or not. We assume that this filter
exists in the case of SIFA. This filter could be a basic countermeasure such
as temporal or spatial redundancy. Compared to previous schemes for SIFA
protection [DDE*20,DOT24|, whose idea is to design the implementation in
such a way that the fault is ensured to propagate to the output, our approach
is simpler. One might think that there is no need to have a filter so that the
adversary can only perform SFA (which our design is resistant to). However, a
filter is usually necessary in order to prevent other fault attacks, such as DFA.

Definition 3 (SIFA resistance). Let A = f(X) be the threshold implementa-
tion of a bijection that is prone to faults. This shared function f is said to be
SIFA-resistant if both the correct (filtered) unshared input X, and the correct
(filtered) unshared output A, where X and A are unmasked from the filtered X
and A, are uniformly distributed.

4.2 Unexploitable faults in component function

We consider an adversary who is able to induce any number of faults into gates
in a single component function. We will prove that our design is resistant to SFA
(Theorem 1) and SIFA (Theorem 2).

Theorem 1. Let A = f(X) be the threshold implementation of a bijection fol-
lowing our design in Subsection 4.1. Let f; € f be a component function whose
gates are prone to any number of faults. This shared function f is SFA-resistant.

We rely on the non-completeness property (Property 2) to prove this theorem.

Proof (Theorem 1). Any faults induced into the gates within a single component
function f; will only affect its outcome Aj;, not the shared input X. Therefore,
the unshared input X, which is decoded from X, remains uniform. The outcome
A;j contains only a single share of every output bit. Due to the nature of secret
sharing, the unshared output A is independent of A; and remains uniform as
well. By Definition 2, we conclude that f is SFA-resistant. O

Theorem 2. Let A = £(X) be the threshold implementation of a bijection fol-
lowing our design in Subsection 4.1. Let f; € f be a component function whose
gates are prone to any number of faults. This shared function f is SIFA-resistant.

16 Viet Sang Nguyen, Vincent Grosso, and Pierre-Louis Cayrel

Proving the SIFA resistance is a bit more complicated because we have to
eliminate the faulty outputs. Here is the proof sketch. We will first show that
there exists a Boolean expression, denoted by &, representing the effectiveness
of the faults (similar to & = X2 A X{ in the analysis for the Keccak S-box in
Section 3). Then, we will prove that £ is independent of the unshared input X.
This gives us the conditional probability of the unshared input (when the faults
are ineffective): Pr[X = z|¢ = 0] = Pr[X = 2] = 27™. Then, the probability of
the correct unshared output can be easily derived since f is a bijection.

Let X; be the set of all input shares excluding the j-th share of every input
bit. The non-completeness property (Property 2) states that each component
function f; is independent of one input share (usually the j-th share). Then, X;
is considered as the input shares of f;.

Lemma 1. There exists a Boolean expression £ of the shares involving in the
computation of f; (i.e., the shares in the set X;), such that:

— & =1 if and only if the faults are effective,
— & =0 if and only if the faults are ineffective.

Proof (Lemma 1). Recall that the faults are called effective when at least one
unshared output bit is flipped (as stated in Definition 1). We consider faults
induced into some gates during the computation of the component function f;,
which returns the j-th share of every output bit. If some of these shares are
flipped, then their corresponding unshared output bits are flipped, and thus the
faults are effective. We draw two truth tables with all possible values of the input
shares X; and their corresponding output share A;, one for the correct compu-
tation and one for the computation with the faults activated. By comparing the
values of the output shares in the two tables, we determine the case where the
faults are effective. The Boolean expression { takes as input the shares X;, and
produces a single output bit. The truth table of £ includes all possible values of
the input shares X; as the two previous tables and their corresponding output
bit, which is determined as follows: if the input values correspond to the case
where the faults are effective, then £ = 1, otherwise, £ = 0. The Boolean expres-
sion of £ can be constructed from this truth table. a

Corollary 1. The output of the Boolean expression £ is independent of unshared
input X, which is unmasked from X.

Corollary 1 can be easily verified as the Boolean expression £ takes as input
the set all input shares excluding the j-th share of every input bit, X;. By the
nature of secret sharing, ¢ is independent of the unshared input X. We are now
ready to prove Theorem 2.

Proof (Theorem 2). We will show that the correct (filtered) unshared input and
the correct (filtered) unshared output are uniformly distributed (as stated in
Definition 3). In the formulas, we will show that Pr[A = a|¢ = 0] = 27" for
every a € [0,2" — 1], and Pr[X = z|¢ = 0] = 27" for every z € [0,2" — 1]. By
Corollary 1, the unshared input X and the Boolean expression £ describing the

Natural Resistance of TI to S(I)FA 17

effectiveness of the faults are independent. We thus have Pr[X = z|¢ = 0] =
Pr[X = x] = 27™. Since f is a bijection, the uniformity of the unshared input
leads to the uniformity of the unshared output, Pr[A = a|§ = 0] = 27". By
Definition 3, we conclude that f is SIFA-resistant. a

4.3 Unexploitable faults in register

We consider an adversary who is capable of inducing a fault into a share X; or A;
in a register stage. If we consider this fault in the bit level, n faults (X 117 con X
or A}, ..., A7) are allowed for the adversary. We will prove that our design is
resistant to SFA (Theorem 3) and SIFA (Theorem 4).

Theorem 3. Let A = £(X) be the threshold implementation of a bijection fol-
lowing our design in Subsection 4.1. Let X; (equivalently, X]l, co, X an bit
level) or A; (equivalently, A}, ., A% in bit level) be the share being faulted in a
register stage. The shared function f is SFA-resistant.

The proof of Theorem 3 relies on the non-completeness property (Property 2)
and is quite similar to the proof of Theorem 1. We include the details of this
proof in Section A.

Theorem 4. Let A = £(X) be the threshold implementation of a bijection fol-
lowing our design in Subsection 4.1. Let X; (equivalently, X]l, s, X an bit
level) or A; (equivalently, A}, ., A% in bit level) be the share being faulted in a
register stage. This shared function f is SIFA-resistant.

To prove Theorem 4, we follow the same strategy as the proof of Theorem 2.
The detailed proof is included in Section A.

5 Composition

In this section, we show that two threshold implementations (TI) that are SFA-
resistant or SIFA-resistant can be composed. With this composition, we can
construct a TT of a full cipher that is resistant to SFA and SIFA attacks.

Let A =f(Y) and Y = g(X) be the two s-share threshold implementations
of two n-bit bijections A = f(Y) and Y = ¢g(X). We denote by A = h(X) where
h = f o g the composition of f and g such that the output shares of g are the
input shares of f. Assume that either g or f is prone to faults in a component
function or in a register stage as presented in Section 4. We will prove that h is
resistant to SFA (Theorem 5) and SIFA (Theorem 6).

Theorem 5. If f and g are SFA-resistant, then the composition h = f o g is
SFA-resistant.

To prove this theorem, we will show that both the (unfiltered) unshared input
X and the (unfiltered) unshared output A of h are uniformly distributed.

18 Viet Sang Nguyen, Vincent Grosso, and Pierre-Louis Cayrel

Proof (Theorem 5). By assumption, g is SFA-resistant, its unshared input X
(also the unshared input of h) and unshared output Y thus are thus uniformly
distributed. Recall that the output shares Y of g are the input shares of f and
f is SFA-resistant by assumption. Since f is a bijection, the uniformity of the
unshared input Y infers the uniformity of the unshared output A of f (also the
unshared output of h). By Definition 2, we conclude that h is SFA-resistant. 0O

For SIFA, we pay special attention to the composition since a filter (redun-
dancy) is required to select the correct outputs. The naive idea is to embed a
filter at the output of both g and f, and assume that these two shared functions
are both SIFA-resistant. However, we can improve this idea by leveraging the
uniform property (Property 4) of TI. Indeed, a single filter at the end of the
composition, i.e., at the output of f, is sufficient. We assume that g is SFA-
resistant (since there is no filter at its output) and f is SIFA-resistant. Let us
suppose that g is faulted, leading to the flips (errors) of some output shares in
Y. These errors will definitely be propagated to the output shares A of f because
the shared function f is a bijection on the shares (Property 4). Therefore, a filter
(redundancy) at the output of f can catch the faults induced into g. This also
implies that, for a full TT of a cipher following our design, a fault detection at the
output of the cipher is sufficient. Compared to the fault propagation scheme us-
ing costly reversible operations of Daemen et al. [DDE'20], our approach using
solely TT is much simpler.

Theorem 6. Ifg is SFA-resistant and f is SIFA-resistant, then the composition
h =fog is SIFA-resistant.

To prove this theorem, we will show that both the correct (filtered) unshared
input X and the correct (filtered) unshared output A of h are uniformly dis-
tributed (as stated in Definition 3).

Proof (Theorem 6). By assumption, g is SFA-resistant, thus its (unfiltered) un-
shared output Y is uniformly distributed. Since the output shares Y of g are the
input shares of f and f is SIFA-resistant by assumption, the (filtered) unshared
output A is uniformly distributed. This implies that the (filtered) unshared in-
put Y of f is uniform since f is a bijection. The uniformity of the filtered Y also
implies the uniformity of the filtered X since g is a bijection. By Definition 3,
we conclude that h is SIFA-resistant. ad

6 Proof-of-concept PRESENT implementation

PRESENT |BKL*07] is an ultra-lightweight block cipher with two versions cor-
responding to the size of the master key: 80 bits and 128 bits, respectively. The
block size of the two PRESENT versions is 64 bits. The cipher consists of 31
rounds, plus an additional whitening key at the end of the computation. Each
round consists of three operations: a key addition, an S-box layer applied to 4-bit
nibbles and a bit permutation layer.

Natural Resistance of TT to S(I)FA 19

 $6bb4604bb40604bb04b1404bHI404bbI0OBbILbRIGbISbbIAbIIbISE
|sls]sls]s]s|s]s]s]s|s|s]s]s]s]

Round 30

IR addddddddddsdddddddddddsadasdddddddsddasdddddddddiiy

A A
|s]s]s]sls|s]s]s|s]s]s]s]s]
v 2 =

Round 31

PP PP PP PP PPPPPPPPPPPPPPPPIPPPRPPPPIPPPIPPPIPPPIPPPRPPPPPPPPPP

Fig. 6: Influence of fault in the last two rounds of PRESENT.

EEEE

EEEE
REEEE

iy
[
il
[T

EEER
ERER

—
[
Nao2
5
>
Z
-+
=
o
]
=
=
@
a
-t
5
<
o
[=1
@
o3}
[}
—~

b) SFA with wrong key gu

@
wn
wn

EEEE
EEEE
EEEE

EEEE

—

¢) SIFA with correct key guess

—

d) SIFA with wrong key guess

Fig. 7: Distribution of state nibbles after S-box in round 30 of the vulnerable im-
plementation after collecting 5000 ciphertexts. The distributions corresponding
to SFA use all 5000 ciphertexts. The distributions corresponding to SIFA use
3762 correct ciphertexts out of 5000.

We simulate the concept of our design with a software first-order TT with 3
shares, following the TI in the software of Sasdrich et al. [SBM18|. Similar to
Poschmann et al. [PMK™T11], the 4-bit S-box is decomposed into two quadratic
functions fog to reduce the number of shares to three. The shared functions A =
f(Y) and Y = g(X), where f = {f1, f2, f3} and g = {g1, 92,93}, can be found
in Section B. To facilitate the simulation of faults, we implement the component
functions of the S-box instead of using look-up tables as [SBM18]. The non-
completeness property is ensured by declaring proper inputs and outputs for
the component functions. The time sharing (Section 4) and the composition
(Section 5) in our design are ensured by the order of the function calls.

20 Viet Sang Nguyen, Vincent Grosso, and Pierre-Louis Cayrel

We simulate a stuck-at-0 fault into a variable in the shared computation for
the first S-box nibble in the 30th round. The impact of the fault is depicted
in Figure 6. To apply SFA or SIFA, the attacker guesses 16 bits of the last
round key, then computes backward from the set of collected ciphertexts to the
faulted position. If the attack is successful, the attacker should observe a non-
uniform distribution for the faulted nibble when the key guess is correct. Note
that guessing four bits of the penultimate is not necessary as it does not affect
the targeted non-uniform distribution. The simulation is done in two scenarios
of the S-box implementation: (1) the approach that is vulnerable to SFA and
SIFA as analyzed in Section 3 and (2) the approach of our design Section 4.
No filter is required in the case of SFA, while a temporal redundancy (i.e., the
cipher is executed twice, and the two outputs are compared to detect faults) is
applied before releasing the ciphertext in the case of SIFA.

EEEE
EERE
EEEE
EEEE
EFEE
RERE

il
i
kil
[T

—
o
et
5
>
z
-+
=
Q
o
=
=
@
a
-+
5
<
o]
=1
@]
]
n
—~

b) SFA with wrong key gu

@
w0
2]

EEEE
EERE
REEE
EEER
EREE
REEE

il
T
il
[T

—

¢) SIFA with correct key guess

—

d) SIFA with wrong key guess

Fig. 8: Distribution of state nibbles after S-box in round 30 of the secure imple-
mentation after collecting 5000 ciphertexts. The distributions corresponding to
SFA use all 5000 ciphertexts. The distributions corresponding to SIFA use 2477
correct ciphertexts out of 5000.

In the first scenario, the shared S-box computation is arranged such that the
stuck-at-0 fault induced into the share Y;* affects the computation of all three
shares of the output bit A* (see Equation 7). As expected, when the key guess
is correct, we can observe in Figure 7 a strongly biased distribution of the first
nibble, which can be exploited by SFA and SIFA.

In the second scenario, the shared S-box computation is implemented as our
design in Figure 5, i.e., the non-completeness property is guaranteed by the time

Natural Resistance of TI to S(I)FA 21

sharing. As expected, we cannot distinguish the distribution of the first nibble
when the key guess is correct and when the key guess is wrong. For SIFA in
particular, this also shows that a basic redundancy combined with T1 is sufficient
since the faults are naturally propagated to the output thanks to the uniformity
property (as discussed in Section 5).

References

BDL97.

BDNT13.

BKK*20.

BKL™*07.

BS97.

BS03.

CJRR99.

Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance
of checking cryptographic protocols for faults (extended abstract). In Wal-
ter Fumy, editor, Advances in Cryptology — EUROCRYPT’97, volume 1233
of Lecture Notes in Computer Science, pages 37-51, Konstanz, Germany,
May 11-15, 1997. Springer, Berlin, Heidelberg, Germany.

Begiil Bilgin, Joan Daemen, Ventzislav Nikov, Svetla Nikova, Vincent Rij-
men, and Gilles Van Assche. Efficient and first-order DPA resistant imple-
mentations of keccak. In Aurélien Francillon and Pankaj Rohatgi, editors,
Smart Card Research and Advanced Applications - 12th International Con-
ference, CARDIS 2013, Berlin, Germany, November 27-29, 2013. Revised
Selected Papers, volume 8419 of Lecture Notes in Computer Science, pages
187-199. Springer, 2013.

Anubhab Baksi, Vinay B. Y. Kumar, Banashri Karmakar, Shivam Bhasin,
Dhiman Saha, and Anupam Chattopadhyay. A novel duplication based
countermeasure to statistical ineffective fault analysis. In Joseph K. Liu and
Hui Cui, editors, ACISP 20: 25th Australasian Conference on Information
Security and Privacy, volume 12248 of Lecture Notes in Computer Science,
pages 525-542, Perth, WA, Australia, November 30 — December 2, 2020.
Springer, Cham, Switzerland.

Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: An ultra-lightweight block cipher. In Pascal Paillier and Ingrid
Verbauwhede, editors, Cryptographic Hardware and Embedded Systems —
CHES 2007, volume 4727 of Lecture Notes in Computer Science, pages 450—
466, Vienna, Austria, September 10-13, 2007. Springer, Berlin, Heidelberg,
Germany.

Eli Biham and Adi Shamir. Differential fault analysis of secret key cryp-
tosystems. In Burton S. Kaliski Jr., editor, Advances in Cryptology —
CRYPTO’97, volume 1294 of Lecture Notes in Computer Science, pages
513-525, Santa Barbara, CA, USA, August 17-21, 1997. Springer, Berlin,
Heidelberg, Germany.

Johannes Blémer and Jean-Pierre Seifert. Fault based cryptanalysis of the
advanced encryption standard (AES). In Rebecca Wright, editor, FC 2003:
Tth International Conference on Financial Cryptography, volume 2742 of
Lecture Notes in Computer Science, pages 162—-181, Guadeloupe, French
West Indies, January 27-30, 2003. Springer, Berlin, Heidelberg, Germany.

Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. To-
wards sound approaches to counteract power-analysis attacks. In Michael J.
Wiener, editor, Advances in Cryptology — CRYPTO0’99, volume 1666 of Lec-
ture Notes in Computer Science, pages 398—412, Santa Barbara, CA, USA,
August 15-19, 1999. Springer, Berlin, Heidelberg, Germany.

22 Viet Sang Nguyen, Vincent Grosso, and Pierre-Louis Cayrel

DANT18.

DDE*20.

DDRT12.

DEG™*18.

DEK16.

DEK™18.

DLVO03.

DOT24.

FJLT13.

Gir03.

GMK16.

GMOO0L1.

Lauren De Meyer, Victor Arribas, Svetla Nikova, Ventzislav Nikov, and Vin-
cent Rijmen. M&M: Masks and macs against physical attacks. JACR Trans-
actions on Cryptographic Hardware and Embedded Systems, 2019(1):25-50,
2018.

Joan Daemen, Christoph Dobraunig, Maria Eichlseder, Hannes Gross, Flo-
rian Mendel, and Robert Primas. Protecting against statistical ineffective
fault attacks. TACR Transactions on Cryptographic Hardware and Embed-
ded Systems, 2020(3):508-543, 2020.

Amine Dehbaoui, Jean-Max Dutertre, Bruno Robisson, and Assia Tria.
Electromagnetic transient faults injection on a hardware and a software
implementations of AES. In Guido Bertoni and Benedikt Gierlichs, editors,
2012 Workshop on Fault Diagnosis and Tolerance in Cryptography, Leuven,
Belgium, September 9, 2012, pages 7-15. IEEE Computer Society, 2012.
Christoph Dobraunig, Maria Eichlseder, Hannes Grofs, Stefan Mangard, Flo-
rian Mendel, and Robert Primas. Statistical ineffective fault attacks on
masked AES with fault countermeasures. In Thomas Peyrin and Steven
Galbraith, editors, Advances in Cryptology — ASIACRYPT 2018, Part 11,
volume 11273 of Lecture Notes in Computer Science, pages 315-342, Bris-
bane, Queensland, Australia, December 2—6, 2018. Springer, Cham, Switzer-
land.

Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Victor Lomné, and
Florian Mendel. Statistical fault attacks on nonce-based authenticated en-
cryption schemes. In Jung Hee Cheon and Tsuyoshi Takagi, editors, Ad-
vances in Cryptology — ASIACRYPT 2016, Part I, volume 10031 of Lecture
Notes in Computer Science, pages 369-395, Hanoi, Vietnam, December 4-8,
2016. Springer, Berlin, Heidelberg, Germany.

Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Stefan Mangard,
Florian Mendel, and Robert Primas. SIFA: Exploiting ineffective fault in-
ductions on symmetric cryptography. JACR Transactions on Cryptographic
Hardware and Embedded Systems, 2018(3):547-572, 2018.

P. Dusart, G. Letourneux, and O. Vivolo. Differential fault analysis on a.e.s.
Cryptology ePrint Archive, Report 2003/010, 2003.

Siemen Dhooghe, Artemii Ovchinnikov, and Dilara Toprakhisar. StaTI:
Protecting against fault attacks using stable threshold implementations.
IACR Transactions on Cryptographic Hardware and Embedded Systems,
2024(1):229-263, 2024.

Thomas Fuhr, Eliane Jaulmes, Victor Lomné, and Adrian Thillard. Fault
attacks on aes with faulty ciphertexts only. In 2013 Workshop on Fault
Diagnosis and Tolerance in Cryptography, pages 108-118, 2013.
Christophe Giraud. DFA on AES. Cryptology ePrint Archive, Report
2003,/008, 2003.

Hannes Gross, Stefan Mangard, and Thomas Korak. Domain-oriented mask-
ing: Compact masked hardware implementations with arbitrary protection
order. Cryptology ePrint Archive, Report 2016/486, 2016.

Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromag-
netic analysis: Concrete results. In Cetin Kaya Kog, David Naccache, and
Christof Paar, editors, Cryptographic Hardware and Embedded Systems —
CHES 2001, volume 2162 of Lecture Notes in Computer Science, pages 251—
261, Paris, France, May 14-16, 2001. Springer, Berlin, Heidelberg, Germany.

GP99.

ISWO03.

Kecl5.

KJJ99.

Koc96.

MSS06.

NRRO6.

PMKT11.

RBNT15.

RDB*18.

Natural Resistance of TI to S(I)FA 23

Louis Goubin and Jacques Patarin. DES and differential power analysis (the
“duplication” method). In Cetin Kaya Kog¢ and Christof Paar, editors, Cryp-
tographic Hardware and Embedded Systems — CHES’99, volume 1717 of Lec-
ture Notes in Computer Science, pages 158-172, Worcester, Massachusetts,
USA, August 12-13, 1999. Springer, Berlin, Heidelberg, Germany.

Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hard-
ware against probing attacks. In Dan Boneh, editor, Advances in Cryptology
— CRYPTO 2008, volume 2729 of Lecture Notes in Computer Science, pages
463-481, Santa Barbara, CA, USA, August 17-21, 2003. Springer, Berlin,
Heidelberg, Germany.

SHA-3 Standard: Permutation-Based Hash and Extendable-Output Func-
tions. National Institute of Standards and Technology, NIST FIPS PUB
202, U.S. Department of Commerce, 2015. https://nvlpubs.nist.gov/
nistpubs/FIPS/NIST.FIPS.202.

Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power anal-
ysis. In Michael J. Wiener, editor, Advances in Cryptology — CRYPT(0’99,
volume 1666 of Lecture Notes in Computer Science, pages 388-397, Santa
Barbara, CA, USA, August 15-19, 1999. Springer, Berlin, Heidelberg, Ger-
many.

Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Neal Koblitz, editor, Advances in Cryptology
— CRYPTO’96, volume 1109 of Lecture Notes in Computer Science, pages
104-113, Santa Barbara, CA, USA, August 18-22, 1996. Springer, Berlin,
Heidelberg, Germany.

Amir Moradi, Mohammad T. Manzuri Shalmani, and Mahmoud Salma-
sizadeh. A generalized method of differential fault attack against AES
cryptosystem. In Louis Goubin and Mitsuru Matsui, editors, Cryptographic
Hardware and Embedded Systems — CHES 2006, volume 4249 of Lecture
Notes in Computer Science, pages 91-100, Yokohama, Japan, October 10—
13, 2006. Springer, Berlin, Heidelberg, Germany.

Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold imple-
mentations against side-channel attacks and glitches. In Peng Ning, Sihan
Qing, and Ninghui Li, editors, ICICS 06: 8th International Conference on
Information and Communication Security, volume 4307 of Lecture Notes in
Computer Science, pages 529-545, Raleigh, NC, USA, December 4-7, 2006.
Springer, Berlin, Heidelberg, Germany.

Axel Poschmann, Amir Moradi, Khoongming Khoo, Chu-Wee Lim, Huax-
iong Wang, and San Ling. Side-channel resistant crypto for less than 2,300
GE. Journal of Cryptology, 24(2):322-345, April 2011.

Oscar Reparaz, Begiil Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid
Verbauwhede. Consolidating masking schemes. In Rosario Gennaro and
Matthew J. B. Robshaw, editors, Advances in Cryptology — CRYPTO 2015,
Part I, volume 9215 of Lecture Notes in Computer Science, pages 764—783,
Santa Barbara, CA, USA, August 16-20, 2015. Springer, Berlin, Heidelberg,
Germany.

Oscar Reparaz, Lauren De Meyer, Begiil Bilgin, Victor Arribas, Svetla
Nikova, Ventzislav Nikov, and Nigel P. Smart. CAPA: The spirit of beaver
against physical attacks. In Hovav Shacham and Alexandra Boldyreva, ed-
itors, Advances in Cryptology — CRYPTO 2018, Part I, volume 10991 of

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202

24 Viet Sang Nguyen, Vincent Grosso, and Pierre-Louis Cayrel

Lecture Notes in Computer Science, pages 121-151, Santa Barbara, CA,
USA, August 19-23, 2018. Springer, Cham, Switzerland.

SA03. Sergei P. Skorobogatov and Ross J. Anderson. Optical fault induction at-
tacks. In Burton S. Kaliski Jr., Cetin Kaya Kog, and Christof Paar, editors,
Cryptographic Hardware and Embedded Systems — CHES 2002, volume 2523
of Lecture Notes in Computer Science, pages 2-12, Redwood Shores, CA,
USA, August 13-15, 2003. Springer, Berlin, Heidelberg, Germany.

SBM18. Pascal Sasdrich, René Bock, and Amir Moradi. Threshold implementation
in software - case study of PRESENT. In Junfeng Fan and Benedikt Gier-
lichs, editors, COSADE 2018: 9th International Workshop on Constructive
Side-Channel Analysis and Secure Design, volume 10815 of Lecture Notes in
Computer Science, pages 227—244, Singapore, April 23-24, 2018. Springer,
Cham, Switzerland.

ShaT9. Adi Shamir. How to share a secret. Communications of the Association for
Computing Machinery, 22(11):612-613, November 1979.

SMG16. Tobias Schneider, Amir Moradi, and Tim Giineysu. ParTI — towards com-
bined hardware countermeasures against side-channel and fault-injection
attacks. In Matthew Robshaw and Jonathan Katz, editors, Advances in
Cryptology — CRYPTO 2016, Part II, volume 9815 of Lecture Notes in
Computer Science, pages 302-332, Santa Barbara, CA, USA, August 14—
18, 2016. Springer, Berlin, Heidelberg, Germany.

VDB%24. Dilip Kumar S. V., Siemen Dhooghe, Josep Balasch, Benedikt Gierlichs,
and Ingrid Verbauwhede. Time sharing - A novel approach to low-latency
masking. Cryptology ePrint Archive, Report 2024/925, 2024.

ZDCT13. Loic Zussa, Jean-Max Dutertre, Jessy Clédiére, and Assia Tria. Power
supply glitch induced faults on FPGA: an in-depth analysis of the injection
mechanism. In 2013 IEEE 19th International On-Line Testing Symposium
(IOLTS), Chania, Crete, Greece, July 8-10, 2013, pages 110-115. IEEE,
2013.

A Detailed proofs

Proof (Theorem 3). If the faulted share is X, it is independent of the unshared
input X by the nature of secret sharing. The uniformity of the (unfiltered) un-
shared input X thus remains unchanged. In TI, the share X; does not involve
in at least a component function, typically f;, which computes the j — th share
of every output bit (Property 2, non-completeness). Hence, the (unfiltered) un-
shared output A is independent of the fault’s effect, and thus is uniform. By
Definition 2, we conclude that f is SFA-resistant.

If the faulted share is A;, it is independent of the unshared output A by the
nature of secret sharing. The uniformity of the (unfiltered) unshared output A
thus remains unchanged. As A; is faulted in a register stage, the input shares are
not affected. The uniformity of the (unfiltered) unshared input X thus remains
unchanged. By Definition 2, we conclude that f is SFA-resistant. a

Proof (Theorem 4). Following the same proof strategy for Theorem 2, we will
show that Pr[A = a|{ = 0] = 27" for every a € [0,2" — 1] and Pr[X = z|¢ =
0] = 27" for every z € [0,2" — 1], where £ = 0 represents the ineffective fault.

Natural Resistance of TI to S(I)FA 25

We first construct the Boolean expression £ describing the effectiveness of the
fault similar to the proof of Lemma 1. We draw two truth tables with all possible
values of the input shares X and their resulted unshared output A, one for the
correct computation and one for the computation with the fault activated. By
comparing the values of the unshared output A in the two tables, we determine
the cases where the fault is effective. The Boolean expression £ takes as input the
shares (Xj,..., X} or A},..., A?) and produces a single output bit. The truth
table of £ includes all possible values of the shares (X},..., X} or A},..., A%)
and the corresponding output bit which is determined as follows: if the value of
the faulted share corresponds to the case where the fault is effective, then £ = 1,
otherwise, £ = 0. The Boolean expression of ¢ can be constructed from this truth
table.

If the faulted share is X;, we have that ¢ is independent of the unshared
input X. Thus, Pr[X = z|{ = 0] = Pr[X = 2] = 27". Since f is a bijection, the
uniformity of the unshared input leads to the uniformity of the unshared output,
Pr[A = al¢ = 0] = 27". By Definition 3, we conclude that f is SIFA-resistant.

If the faulted share is A;, we have that & is independent of the unshared
output A. Thus, Pr[A = a|{ = 0] = Pr[A = a] = 27". Since f is a bijection, the
uniformity of the unshared output leads to the uniformity of the unshared input,
Pr[X = z|{ = 0] = 27". By Definition 3, we conclude that f is SIFA-resistant.

O

B Threshold implementation of PRESENT S-box

Y1 = g1(X2, X3)

Vi=X;0 XXX, 0 X0 X3X3 0 X2X3 @ X3X3

VP =X,

VP=10X;0X;0 X2 0 X3X; 0 X3X3 © X3X5

Vi'=1eXio X0 X0 X3X0 X5 X2 0 X3 X530 X X3 0 X3X3
OXIXsDX3X30 X3X5 @ X3X5

Y2 = g2(X3, X1)
Yy=X;oXjoXioXioX;oX3X]®X3X] @ X7X3
v = xj
VP=1oXioX;0XioX3X?0 XX} 0 X7X3
Vy=loXjoXioXioXiXioXsXio XX o Xs X3 0 X3X3
o XIX{ e X3X! o XiX! o XPX{

26 Viet Sang Nguyen, Vincent Grosso, and Pierre-Louis Cayrel

Y3 = g3(X1, X2)
Vi=X{ieXioXioX{oX0X3XI0 XiX5 e X3X3
Y:=X|
YVi=1l0X{ioX{0Xs0 XX 0 X2X5 0 X3X;
Vi=leX{ioX?oXioXi X0 XX XiX5 o XiX3o X3X3
OXIXs D XXy 0 X3X5 ®X5X5

Ar = f1(Ya,Ys)
Al =Y,
AL =Y7 0V oY)V @ VY 6 VY
A=10Y, oY, aY;0Y, Yy oY,V @YYy
A=Y oY,V oYYy oYYy

Ay = fao(Y3,Y1)
A% = Ysl
A=Y} ovio ViV oYY @ Y2
A =loY]eYy o) oYY e ViY@ VY
A=Y oV o Y2V o VY

Az = f3(Y1,Ys)
Ay =Y}
A=YeY oYV oYY, eV Y,
A=10oY!oY?ae YoV VS o VY o Vv
A3 =Y eV oYY e YY)

C Additional illustration

Natural Resistance of TT to S(I)FA

SB

SR

MC

SB

SR

Fig. 9: Illustration of SFA in the last two rounds of AES.

27

	Natural Resistance of Threshold Implementations to Statistical (Ineffective) Fault Attacks

