
SIFA on Nonce-based Authenticated Encryption: When Does It Fail?
Application to ASCON

Viet Sang Nguyen, Vincent Grosso, Pierre-Louis Cayrel
Université Jean Monnet Saint-Etienne, CNRS, Institut d Optique Graduate School,

Laboratoire Hubert Curien UMR 5516,
F-42023 Saint-Etienne, France

{viet.sang.nguyen, vincent.grosso, pierre.louis.cayrel}@univ-st-etienne.fr

Abstract—In nonce-based authenticated encryption schemes,
fault attacks such as differential fault analysis are not appli-
cable to due to the uniqueness of the nonce. In this context,
Dobraunig et al. (SAC 2018) showed that Statistical Ineffective
Fault Attacks (SIFA) remain applicable and powerful. The
authors proposed a SIFA-based attack strategy targeting the
initialization in nonce-based authenticated encryption schemes
and demonstrated its practicality using a common fault
method: instruction skip.

In this work, we provide a more in-depth analysis of this
attack strategy, with a focus on instruction skip as the fault
method. First, we model common instruction skip scenarios in
practice and formalize the probability that a fault is ineffective.
Our analysis reveals that this probability depends on the
instruction type and the device architecture. Notably, we show
that it is practically inefficient to obtain a sufficient number
of ineffective faults for SIFA when skipping an XOR instruction
on 32-bit or 64-bit systems, where register data tends to be
uniformly distributed. Second, we prove that, in certain au-
thenticated encryption implementations, the intermediate value
targeted by the attack unexpectedly remains unbiased under
ineffective faults, making SIFA inapplicable. As a case study, we
demonstrate this behavior in an 8-bit ASCON implementation.

Keywords-Fault Attack; SIFA; Instruction skip; Authenti-
cated Encryption; ASCON;

I. INTRODUCTION

Since the seminal works of Boneh et al. [1] and Biham
and Shamir [2], fault attacks have emerged as a significant
threat to cryptographic implementations. This threat is par-
ticularly serious for embedded devices, to which attackers
often have physical access. Recently, NIST selected ASCON
as the new standard for lightweight authenticated encryption,
targeting such constrained environments. As a consequence,
ASCON is expected to be widely deployed in real-world
devices. This highlights the importance of investigating fault
attacks against this authenticated encryption scheme.

In the literature, Differential Fault Analysis (DFA)-like
attacks [2] have been shown to be ineffective against authen-
ticated encryption schemes due to the use of a unique nonce
in each encryption [3]. To address this limitation, Dobraunig
et al. [4] proposed the use of Statistical Ineffective Fault
Attacks (SIFA) [5], [6]. The authors demonstrated that their

attack strategy applies to a wide range of authenticated
encryption schemes where the nonce is mixed with the key
during the initialization phase. The core idea of the attack
is to cause a biased distribution in a bit before the S-box
computation of the 2nd initialization round by ineffective
faults, and then recover the key through a statistical analysis
of this bias. The authors validated their approach by mount-
ing attacks on 8-bit implementations of two authenticated
encryption schemes based on the Keccak-f permutation [7],
namely, Keyak [8] and Ketje [9]. To induce faults, they
employed a common method, instruction skip, realized by
clock glitching. The authors conjectured that their attack
strategy can be adopted to other authenticated encryption
schemes such as ASCON.

In [4] and many other demonstrations of SIFA [5], [6],
instruction skip is a common used method to cause a
bias in the intermediate value under ineffective faults. This
skip typically targets an instruction involved in the S-box
computation. However, it is often unclear which specific
instruction was skipped in those demonstrations. This may
lead one to think that blindly skipping any instruction in
the S-box computation is sufficient to introduce a bias in
the intermediate value under ineffective faults. In this work,
we show that this is not the case in certain nonce-based
authenticated encryption schemes.

Our contributions. This paper provides a more in-depth
analysis of the attack strategy introduced by Dobraunig
et al. [4], with a focus on instruction skip as the fault
method. First, we model common instruction skip scenarios
in practice and formalize the probability of a fault being
ineffective. Our analysis shows that when an attacker skips
an instruction, the probability of causing an ineffective fault
depends on both the type of instruction and the device
architecture. In particular, we show that skipping an XOR

instruction on 32-bit or 64-bit systems is very unlikely
to result in an ineffective fault, making SIFA practically
inefficient.

Second, we show that in certain authenticated encryption
implementations, the intermediate value targeted by the
attack strategy in [4] remains unbiased under ineffective

faults, making SIFA inapplicable in these cases. We model
such implementations and provide a formal proof for the
uniformity of the targeted intermediate value. To support our
findings, we present a case study on an 8-bit ASCON imple-
mentation, where the intermediate value remains uniformly
distributed under ineffective faults.

Outline. This paper is organized as follows. Section II
provides the background on ASCON and SIFA. Section III
details the application of the attack strategy in [4] to ASCON.
Section IV models common instruction skip scenarios and
analyzes the probability that an ineffective fault occurs.
Section V presents the authenticated encryption implemen-
tations where the intermediate value remains uniform under
ineffective faults and a case study on ASCON. Finally,
Section VI concludes our work.

II. BACKGROUND

In this section, we begin by describing the ASCON
authenticated encryption scheme. We then provide a brief
introduction to SIFA, followed by a recap of its application
to nonce-based authenticated encryption as proposed by
Dobraunig et al. [4].

A. ASCON

ASCON [10] is a suite of Authenticated Encryption with
Associated Data (AEAD) and hashing algorithms based on
the duplex sponge construction [11]. This paper focuses
on the authenticated encryption ASCON-AEAD128, referred
to as ASCON hereafter. Figure 1 illustrates the encryption
process. Its inputs include a 128-bit key K, a 128-bit
nonce N , a constant initialization vector IV, associated
data A1, . . . , As, each of r bits, and plaintexts P1, . . . , Pt,
each of r bits. It produces as output a tag T of 128 bits
and ciphertexts C1, . . . , Ct, each of r bits. The tag T is
used during the decryption to verify the authenticity of the
ciphertexts and associated data.

The permutations pa and pb, consisting of a and b rounds,
form the core of the ASCON construction. The version
standardized by NIST has a = 12, b = 8 and r = 128.
Each round is composed of three steps operating on a 320-bit
state: (1) addition of constants, (2) substitution layer (S-box),
and (3) linear diffusion layer. The three steps are depicted in
Figure 2. The 320-bit state is divided into five 64-bit words,
which can be stored in one or more smaller-sized registers.
This design facilitates the transition from the mathematical
description to practical and efficient implementations.1

Let x0, . . . , x4 represent the five 64-bit words of the round
input. In the first step, a round constant is added to the
least significant byte of x2. Since the constant addition step
is not important in this work, we simplify the notation by
continuing to denote the output of the first step as x0, . . . , x4.

1Implementations for 8-bit, 32-bit, 64-bit architectures can be found at
https://github.com/ascon/ascon-c

The second step involves a non-linear transformation (S-
box) applied to five bits, with one bit taken from each word
of the first step’s output. Let y0, . . . , y4 represent the output
state of the S-box, and let 1 (in bold) denote a word filled
with 64 bit 1s. The algebraic normal form (ANF) of the S-
box, with all operations performed on the full 64-bit words
(in bitsliced form) can be expressed as:

y0 = x4x1 ⊕ x3 ⊕ x2x1 ⊕ x2 ⊕ x1x0 ⊕ x1 ⊕ x0,

y1 = x4 ⊕ x3x2 ⊕ x3x1 ⊕ x3 ⊕ x2x1 ⊕ x2 ⊕ x1 ⊕ x0,

y2 = x4x3 ⊕ x4 ⊕ x2 ⊕ x1 ⊕ 1,

y3 = x4x0 ⊕ x4 ⊕ x3x0 ⊕ x3 ⊕ x2 ⊕ x1 ⊕ x0,

y4 = x4x1 ⊕ x4 ⊕ x3 ⊕ x1x0 ⊕ x1.

(1)

The third step, linear diffusion layer, applies a rotation to
each word at the S-box output twice. The rotated words are
then XOR-ed with the original one. Let z0, . . . , z4 denote
the output of the linear diffusion layer. The linear functions
applied to each word are defined as:

z0 = y0 ⊕ (y0 ≫ 19)⊕ (y0 ≫ 28),

z1 = y1 ⊕ (y1 ≫ 61)⊕ (y1 ≫ 39),

z2 = y2 ⊕ (y2 ≫ 1)⊕ (y2 ≫ 6),

z3 = y3 ⊕ (y3 ≫ 10)⊕ (y3 ≫ 17),

z4 = y4 ⊕ (y4 ≫ 7)⊕ (y4 ≫ 41).

(2)

At the beginning of the initialization (Figure 1), the 64-bit
initialization vector IV is stored in x0. The two 64-bit halves
of the key, (k0, k1) = K, are stored in x1 and x2. The two
64-bit halves of the nonce, (n0, n1) = N , are stored in x3

and x4. The S-box computation during the first round of the
initialization phase can thus be written as follows:

y0 = n1k0 ⊕ n0 ⊕ k1k0 ⊕ k1 ⊕ k0IV⊕ k0 ⊕ IV,

y1 = n1 ⊕ n0k1 ⊕ n0k0 ⊕ n0 ⊕ k1k0 ⊕ k1 ⊕ k0 ⊕ IV,

y2 = n1n0 ⊕ n1 ⊕ k1 ⊕ k0 ⊕ 1,

y3 = n1IV⊕ n1 ⊕ n0IV⊕ n0 ⊕ k1 ⊕ k0 ⊕ IV,

y4 = n1k0 ⊕ n1 ⊕ n0 ⊕ k0IV⊕ k0.

(3)

B. Statistical Ineffective Fault Attacks (SIFA)

Proposed by Dobraunig et al. [5], SIFA combines the
ideas of Ineffective Fault Attacks (IFA) [12] and Statisti-
cal Fault Attacks (SFA) [13]. It exploits the distribution
caused by ineffective faults, i.e., those that do not affect
the outcome of a computation. As the fault effect depends
on the intermediate value at the chosen attack point, the
distribution of this value is often biased. Relying on solely
ineffective faults makes SIFA applicable even in the presence
of popular detection/infection countermeasures [5]. In this
case, the countermeasures can be seen as a filter for the
ineffective faults.

The principle of SIFA is as follows. First, the attacker
chooses an intermediate value as the attack point such
that its calculation depends on parts of the key. Second,

https://github.com/ascon/ascon-c

Figure 1: Encryption in ASCON [10].

(a) Three steps of a round (b) An S-box computation.

Figure 2: Each step in a round [10].

he forces the values at the attack point to follow a non-
uniform distribution by fault inductions. In practice, these
faults can be achieved with an instruction skip using clock
glitches [5], [6] or using laser [14]. Third, he collects a
set of plaintexts/ciphertexts corresponding to the ineffective
faults. Finally, key recovery is performed using this set. For
each key guess, the attacker computes the intermediate value
using the collected plaintexts/ciphertexts. This value should
follow an (unknown) non-uniform distribution when the
key is correctly guessed. In contrast, the distribution of the
calculated values is expected to be close to uniform for any
wrong key guesses. Hence, the key guess corresponding to
the calculated distribution that is “furthest” from uniformity
can be identified as the correct key.

C. SIFA on Nonce-based Authenticated Encryption

As this work investigate more thoroughly the extension
of SIFA to nonce-based authenticated encryption schemes
by Dobraunig et al. [4], we now recap the principle of

their attack strategy. The authors focus on the initialization
phase of the authenticated decryption, where the nonce N
and the key K are processed. The verification of the tag T
in the decryption is considered as the filter for ineffective
faults. The state before the application of the S-box in the
2nd round of the initialization is chosen as the attack point.
The distribution of one or multiple bits (intermediate value)
at this state is assumed to be non-uniform for the filtered
computations. A sufficient number of nonces corresponding
to ineffective faults is collected for key recovery.

In the demonstration on Keyak and Ketje, the authors
recovered the key by exploiting the biased distribution of
a single bit before the application of the S-box in the 2nd
round. They also detailed the analysis of the involved key
bits in the calculation of the targeted bit. Their experiment
was conducted on a 8-bit Xmega 128D4 microprocessor.
An instruction in the S-box computation of the first round
was skipped by clock glitches. This leads to the bias in the
distribution of the targeted bit.

III. SIFA ON ASCON

In [4], the authors conjectured that their attack strategy
can also be adopted to other schemes and ASCON is one of
them. In this section, we detail the application of this attack
strategy to ASCON before presenting our analysis in the next
sections.

Following [4], a bit at the input of the S-box in the 2nd
round of the initialization is chosen as the attack point.
Note that, in ASCON, this is the same as choosing the first
round output as the attack point because the step of constant
addition does not change the distribution of the targeted bit.
Thus, the attacker can choose one of the following as the
intermediate value: zj0, z

j
1, z

j
2, z

j
3, z

j
4, where the superscript

j ∈ [0, 63] denotes the j-th bit in a word (the rightmost bit
is at index 0). The computation of each of these bits involves
three S-box applications as the effect of the linear diffusion
layer.

We provide hereafter a detailed analysis for a bit of the
first word, zj0. A similar analysis is applicable for a bit of
other words, zj1, z

j
2, z

j
3, z

j
4. Figure 3 depicts the involved bits

in the computation zj0 = yj0 ⊕ yj+19
0 ⊕ yj+28

0 , where y0 is
computed as in Equation 3 (the additions in the superscripts
are implicitly taken modulo 64). Generally, the computation
of zj0 involves the following bits:

• 6 bits of the key, including 3 bits from the first key half
(kj0, k

j+19
0 , kj+28

0) and 3 bits from the second key half
(kj1, k

j+19
1 , kj+28

1),
• 6 bits of the nonce, including 3 bits from the first nonce

half (nj
0, n

j+19
0 , nj+28

0) and 3 bits from second nonce
half (nj

1, n
j+19
1 , nj+28

1),
• 3 constant bits of the initialization vector IV.

Figure 3: Involved bits in the computation of zj0.

We observe that the key bits only have linear influence
(XOR operations) on the computations of zj2 and zj3 (see
Equation 3 and Equation 2). As a consequence, the inter-
mediate value (zj2 or zj3) will have the same distribution for
all the key candidates in the key recovery (not considering
its sign). For this reason, the correct key guess cannot be

distinguished if one of these bits is chosen as the attack
point.

Meanwhile, the key bits influence the computations of zj0,
zj1 and zj4 in a non-linear manner (there are AND operations
between the nonce and the key). Therefore, the correct
key and the wrong key guesses can be distinguished if the
attacker chooses one of these bits as the attack point. We
will thus focus on the computations of zj0, zj1 and zj4 in our
analyzes in the next sections.

IV. INEFFECTIVE FAULTS WITH INSTRUCTION SKIP

In the context of SIFA, a commonly used method to in-
duce a fault in practice is to skip an instruction. This skipped
instruction is usually involved in the S-box computation, as
demonstrated in prior works [5], [6], [4]. Figure 42 provides
an illustrative explanation of how a clock glitch can cause an
instruction to be skipped in a pipelined system. The glitch
inserts a fast clock cycle between two ordinary clock cycles.
As a consequence, Execution #1 is skipped since the system
does not have enough time to perform the instruction.

(a) Normal clock.

(b) Glitched clock.

Figure 4: Example of instruction skip by a clock glitch in a
pipelined system.

In this section, we analyze the feasibility of obtaining
an ineffective fault via an instruction skip in a w-bit ar-
chitecture, where w ∈ {8, 32, 64}. More specifically, we
consider the skipped instruction to be one of the following
operations: XOR, AND and NOT, which are core components
of authenticated encryption schemes such as ASCON and
those based on Keccak permutation. We then validate our
analysis with a case study on ASCON.

2Figure taken from https://github.com/newaetech/chipwhisperer-jupyter

https://github.com/newaetech/chipwhisperer-jupyter

A. Main idea

In the following, we analyze the effect of skipping each
of XOR, AND and NOT instructions. For each case, we assess
the practicality of SIFA by computing the probability that a
fault is ineffective.

1) Skipping an XOR: We first generalize the skipped
instruction into two scenarios: one where the source registers
are different from the destination register, and another where
one of the source registers is also the destination register.
These scenarios commonly appear in ARM architectures.
Additionally, the latter scenario captures the 2-operand in-
struction format found in architectures such as AVR. The
skipped instruction is highlighted in red as follows:

OP0 R2 − −
...

XOR R2 R1 R0
...

OP2 − R2 −
Scenario 1 : R2 = R1 ⊕ R0

OP0 R2 − −
...

XOR R2 R2 R0
...

OP2 − R2 −
Scenario 2 : R2 = R2 ⊕ R0

In the above illustration, OP0, and OP2 represent operations,
R1 and R2 denote w-bit registers, and R0 represents either a
w-bit register or an immediate value. Registers or immedi-
ates that are not relevant to our analysis are denoted by “−”
for improved readability.

We focus on the value of the destination register R2 in OP0
and XOR. Let v2 denote the value of R2 after the execution of
OP0. Under normal conditions (i.e., without fault injection),
this register is subsequently updated by the execution of
XOR, resulting in a new value v′2. However, if XOR is skipped
due a to a fault, the value of R2 remains unchanged at v2.
Consequently, the instruction OP2 operates on a faulty value
of R2.

Let v0 and v1 denote the value of R0 and R1 before the
execution of XOR. We have

v′2 = v1 ⊕ v0

in the first scenario and

v′2 = v2 ⊕ v0

in the second scenario. We make the following assumptions:
(a) v0, v1 and v2 are uniformly distributed and independent.

This typically occurs when these values originate from,
or are derived from, random inputs (i.e., nonces), which
is usually the case in practical SIFA scenarios. As a
result, v′2 is uniformly distributed and independent of
v2.

(b) When a fault occurs (i.e., the XOR instruction is skipped),
it is considered ineffective if v2 = v′2. Otherwise, the
fault is referred to as effective.

As v2 and v′2 are independent and uniformly distributed,
the probability of an ineffective fault is:

Pr[v2 = v′2] = 2−w,

where w ∈ {8, 16, 32} denotes register bit-width of the
hardware architecture. For 32-bit and 64-bit architectures,
Pr[v2 = v′2] ≈ 0, meaning that it is practically inefficient to
obtain an ineffective fault. In contrast, Pr[v2 = v′2] = 2−8 for
8-bit architecture, implying that an ineffective fault can be
expected once every 28 executions with random inputs. This
shows that performing SIFA by skipping an XOR instruction
is highly inefficient for 32-bit and 64-bit architectures, as
the probability of achieving an ineffective fault is too low
to be practical.

2) Skipping an AND: Similar to before, we first generalize
the skipped instruction into two scenarios. In the case
of an XOR instruction, the analysis is the same for both
scenarios. However, for the AND instruction considered here,
the analysis differs between the two.

OP0 R2 − −
...

AND R2 R1 R0
...

OP2 − R2 −
Scenario 1 : R2 = R1 ∧ R0

OP0 R2 − −
...

AND R2 R2 R0
...

OP2 − R2 −
Scenario 2 : R2 = R2 ∧ R0

Using the same notations as before, let v0, v1 and v2
denote the values of registers R0, R1, and R2, respectively,
prior to the execution of AND. Let v′2 represent the value of
R2 after the execution of AND under normal conditions (i.e.,
without fault injection). If the AND instruction is skipped, the
value of R2 remains unchanged at v2. We make the following
assumptions:
(a) v0, v1 and v2 are independent and uniformly distributed.
(b) When a fault occurs (i.e., the AND instruction is skipped),

it is considered ineffective if v2 = v′2. Otherwise, the
fault is referred to as effective.

Scenario 1. We have v′2 = v1 ∧ v0. For simplicity, we
consider 1-bit values for v0, v1, v2 and v′2. Table I presents
the truth table of the AND operation. Since v2 is uniformly
distributed, it takes the value 0 with probability 0.5 and the
value 1 with probability 0.5. When v2 = 0, the probability
that the fault is ineffective equals the probability that v′2 = 0,
which is 0.75. Conversely, when v2 = 1, the probability that
the fault is ineffective equals the probability that v′2 = 1,
which is 0.25. Therefore, the total probability of an ineffec-
tive fault is

Pr[v2 = v′2] = 0.5× 0.75 + 0.5× 0.25 = 0.5.

When considering a w-bit architecture, the probability of an
ineffective fault becomes

Pr[v2 = v′2] = 2−w.

This result is analogous to skipping an XOR instruction. For
32-bit and 64-bit architectures, the probability of achieving
an ineffective fault is too low to be practical.

v0 v1 v′2
0 0 0
0 1 0
1 0 0
1 1 1

Table I: Truth table of AND operation for scenario 1.

Scenario 2. We have v′2 = v2 ∧ v0. We consider the 1-bit
truth table in Table II for this equation. It can be seen that
the probability of a fault being ineffective is Pr[v2 = v′2] =
0.75. When considering a w-bit architecture, this probability
becomes

Pr[v2 = v′2] = 0.75w.

For w = 32 and w = 64, the values of Pr[v2 = v′2] are
approximately 10−4 and 10−8, respectively. This means that
it is more practical for a fault to be ineffective. Therefore,
skipping an instruction of this type makes SIFA more
applicable.

v0 v2 v′2 v2 = v′2
0 0 0 ✓
0 1 0
1 0 0 ✓
1 1 1 ✓

Table II: Truth table of AND operation for scenario 2.

3) Skipping a NOT: As before, we first generalize the
skipped instruction into two scenarios. We use the same
notation for register values as above. We make the following
assumptions:
(a) v0 and v2 are independent and uniformly distributed.
(b) When a fault occurs (i.e., the NOT instruction is skipped),

it is considered ineffective if v2 = v′2. Otherwise, the
fault is referred to as effective.

OP0 R2 − −
...

NOT R2 R0
...

OP2 − R2 −
Scenario 1 : R2 = ¬R0

OP0 R2 − −
...

NOT R2 R2
...

OP2 − R2 −
Scenario 2 : R2 = ¬R2

Scenario 1. We have v′2 = ¬v0. Since v0 is uniformly
distributed, v′2 is also uniformly distributed. Therefore, the
probability of a fault being ineffective is

Pr[v2 = v′2] = 2−w.

This probability is similar to that of skipping an XOR

instruction, meaning that it is highly inefficient to obtain
an ineffective fault on 32-bit and 64-bit architectures.

Scenario 2. We have v′2 = ¬v2. In this case, an ineffective
fault never occurs,

Pr[v2 = v′2] = 0.

Therefore, if a NOT instruction corresponding to this scenario
is skipped, the application of SIFA becomes infeasible.

B. Application to ASCON

To validate the above analysis, we simulate an instruc-
tion skip on the 8-bit ASCON implementation.3 We use
two instances of the encryption implementation, one as
the reference and the other modified to skip an instruc-
tion. Specifically, an 8-bit instruction involved in the first
round computation during the initialization is skipped. This
instruction corresponds to one of the scenarios discussed
above. Both instances are executed with the same random
nonce (while the associated data and plaintext are set to
empty strings, as they are not relevant to the attack). If the
outputs produced by both instances are identical, the fault
is considered ineffective.

Skipped
Instruction

Ineffective
Faults

Empirical
Probability

Theoretical
Probability

XOR S1 81 0.0040 0.0039
XOR S2 79 0.0040 0.0039
AND S1 80 0.0040 0.0039
AND S2 2011 0.1006 0.1001
NOT S1 74 0.0037 0.0039
NOT S2 0 0 0

Table III: Empirical results from the instruction skip simu-
lation. The encryption instances were executed 20000 times
with random nonces.

Table III presents the results of our simulation. As ex-
pected, the empirical probabilities are close to the theoretical
ones. This confirms the soundness of our analysis.

C. Discussion

The key point from our analysis is that, although SIFA
is a powerful attack, its applicability depends on both how
the fault is introduced and on the architecture of the target
device. If an attacker blindly skips an instruction in the hope
of causing an ineffective fault, the chances of success can be
varied. Especially when skipping an XOR instruction in 32-
bit and 64-bit architectures, it becomes highly inefficient to
obtain an ineffective fault. In such cases, other fault injection
techniques may be more efficient. For example, an attacker
could use laser fault injection to force one or several bits
in a register to be stuck at 0. In this case, only a few bits
are affected, rather than the entire 32-bit or 64-bit register,
increasing the probability of a fault being ineffective.

3The 8-bit implementation can be found at: https://github.com/ascon/
ascon-c/tree/main/crypto aead/asconaead128/bi8

https://github.com/ascon/ascon-c/tree/main/crypto_aead/asconaead128/bi8
https://github.com/ascon/ascon-c/tree/main/crypto_aead/asconaead128/bi8

In our analysis, we model instruction skip scenarios in au-
thenticated encryption schemes like ASCON. However, those
scenarios may not cover all practical cases. For example,
in the second scenario involving a skipped NOT instruction,
where v′2 = ¬v2, we argue (under stated assumptions) that
an ineffective fault never occurs. Now, suppose that v′2 is
used in a subsequent operation, such as uc = v′2 ∧ v0 =
¬v2 ∧ v0. If the NOT is skipped, R2 retains the value v2,
and the operation becomes uf = v2 ∧ v0. In this case, an
ineffective fault occurs with the probability of 0.5, as shown
in Table IV.

v0 v2 uc uf uc = uf

0 0 0 0 ✓
0 1 0 0 ✓
1 0 1 0
1 1 0 1

Table IV: Truth table of uc and uf .

V. UNIFORMITY OF INTERMEDIATE VALUE

In authenticated encryption schemes such as ASCON and
those based on Keccak permutation, each round typically
consists of two types of operations: one for diffusion and
another for non-linearity (S-box). In the attack strategy
proposed by Dobraunig et al. [4], a single bit of the state
just before the S-box application in the 2nd round of
initialization is chosen as the intermediate value. This bit
generally results from a diffusion process at the end of the
1st round or at the beginning of the 2nd round. In other
words, the intermediate value is the XOR of several S-box
output bits from the 1st round.

Our key observation is as follows: if these S-box output
bits are uniformly distributed and independently computed,
and if at least one of the S-box computations is unaffected
by the fault (e.g., instruction skip), then the distribution of
the intermediate value remains uniform. Consequently, SIFA
is not applicable in this scenario.

In this section, we first formalize this property and provide
a general proof. Then, we demonstrate its application in the
context of ASCON.

A. Main idea

Let v be the intermediate value, and let y0, y1, . . . , yℓ−1

denote ℓ output bits from ℓ S-box computations involved in
the XOR computation of v. We write:

v = y0 ⊕ y1 ⊕ . . .⊕ yℓ−1. (4)

We denote yj = f(xj
0, x

j
1, . . . , x

j
m−1) the computation

of the S-box output bit yj , where j ∈ [0, ℓ − 1] and
xj
0, x

j
1, . . . , x

j
m−1 are m S-box input bits. We make the

following assumptions:

(a) The S-box computations producing y0, y1, . . . , yℓ−1

are independent, which also implies that their in-
put tuples (x0

0, x
0
1, . . . , x

0
m−1), (x

1
0, x

1
1, . . . , x

1
m−1), . . .,

(xℓ−1
0 , xℓ−1

1 , . . . , xℓ−1
m−1) are independent. This indepen-

dence is usually the case when the S-box is implemented
in bitsliced form, as in ASCON.

(b) Each yj , for 0 ≤ j ≤ ℓ− 1, is uniformly distributed.
(c) At least one of the S-box computations is unaffected

by the fault (e.g., instruction skip). Without loss of
generality, we assume that the computation of y0 is
unaffected.

Theorem 1. In the case of ineffective faults, the filtered
values of v follow a uniform distribution.

As a consequence of Theorem 1, SIFA is not applicable
because the distribution of the intermediate value v remains
unbiased. We now proceed to prove this theorem. If there
is no filter for ineffective faults, the proof becomes trivial
since the uniformity of y0 (by assumption) directly implies
the uniformity of the v. However, SIFA relies exclusively on
ineffective faults, meaning that only (filtered) correct values
of v are considered. This filtering makes the proof more
complicated.

Here is the proof sketch. First, we define a Boolean
variable ξ that indicates the effectiveness of the fault: ξ = 1
if the fault is effective, and ξ = 0 otherwise. Our goal is
to show that the distribution of v remains uniform given
that the fault is ineffective. Formally, we want to prove the
following conditional probability:

Pr[v = a|ξ = 0] = 0.5, (5)

where a ∈ {0, 1}. Next, we demonstrate that ξ is indepen-
dent of y0. Since y0 is uniformly distributed by assumption,
this independence implies that its uniformity is preserved
even when conditioning on ξ = 0. Finally, the uniformity of
y0 leads directly to the uniformity of v.

Lemma 1. The variable ξ can be expressed as a
Boolean function of the input bits to the S-box produc-
ing y1, . . . , yℓ−1. These input bits are denoted by xj

i , for
0 ≤ i ≤ m− 1 and 1 ≤ j ≤ ℓ− 1.

Proof of Lemma 1: We construct a truth table for
y1, . . . , yℓ−1, considering all possible values of the inputs
xj
i , for 0 ≤ i ≤ m − 1 and 1 ≤ j ≤ ℓ − 1. We use two

copies of this table: the first serves as a reference, while
in the second, we re-evaluate the values of y1, . . . , yℓ−1,
taking the fault effect into account. By comparing the two
tables, we identify input values where the fault is ineffective.
Example 1 provides a demonstration of this process.

We then construct the truth table for ξ, considering all
possible values of xj

i , for 0 ≤ i ≤ m−1 and 1 ≤ j ≤ ℓ−1.
If an input results in an ineffective fault, we set ξ = 0;
otherwise, ξ = 1. From this truth table, the Boolean function
representing ξ can be derived.

Example 1. We consider the function y1 = x1
0⊕x1

1x
1
2 (ℓ =

2, m = 3). Let registers registers R0, R1, and R2 store the
values x1

0, x1
1, and x1

2, respectively. The value y1 is computed
using the following instructions:

AND R1 R1 R2
XOR R0 R0 R1

If the AND instruction is skipped, the computation becomes
ỹ1 = x1

0 ⊕ x1
1. The fault is consider ineffective if y1 = ỹ1,

as shown in Table V.

x1
0 x1

1 x1
2 y1 ỹ1 y1 = ỹ1 ξ

0 0 0 0 0 ✓ 0
0 0 1 0 0 ✓ 0
0 1 0 0 1 1
0 1 1 1 1 ✓ 0
1 0 0 1 1 ✓ 0
1 0 1 1 1 ✓ 0
1 1 0 1 0 1
1 1 1 0 0 ✓ 0

Table V: Example of truth table construction for ξ.

Corollary 1. The variable ξ is independent of the S-box
output bit y0.

It is evident that ξ is independent of y0, since the Boolean
function representing ξ does not depend on the input bits of
y0, and the computation of y0 is independent of those of
y1, . . . , yℓ−1.

Proof of Theorem 1: Let a ∈ {0, 1}. By assumption,
Pr[y0 = a] = 1/2. Since ξ and y0 are independent
(Corollary 1), it follows that

Pr[y0 = a|ξ = 0] = Pr[y0 = a] = 0.5.

This means that y0 remains uniformly distributed even when
conditioned on the fault being ineffective. Consequently, the
uniformity of v directly follows from the uniformity of y0.

B. Application to ASCON

In the context of SIFA on ASCON, following the attack
strategy proposed in [4], a bit in the first round output of
the initialization is chosen as the intermediate value (also
corresponding to a bit in the state before the application of
the S-box in the 2nd round). As discussed in Section III, we
focus only on the bits zj0, zj1 and zj4, as the key influences
these bits in a non-linear manner. In this section, we show
that the intermediate value (zj0, zj1 or zj4) has uniform
distribution even when conditioned on ineffective faults. As
a consequence, SIFA is not applicable since the distribution
of the intermediate value is unbiased. Our analysis considers
an instruction skip as the fault in an 8-bit implementation.

To prove the uniformity of the intermediate value, we
show that the 8-bit implementation of ASCON satisfies the
three assumptions for Theorem 1. We present here a detailed
analysis for zj0, a similar analysis can be straightforwardly
applied to zj1 and zj4. Recall that the output bits yj0, yj+19

0

and yj+28
0 , each resulting from separate S-box computations,

are involved in the XOR computation of zj0, as presented in
Section III. Thus, Equation 4 becomes

zj0 = yj0 ⊕ yj+19
0 ⊕ yj+28

0 .

First, it is straightforward to observe that the S-box com-
putations producing yj0, yj+19

0 and yj+28
0 are independent,

due to the bitsliced design of ASCON. Hence, the first
assumption is satisfied.

Second, we show that each of yj0, yj+19
0 and yj+28

0 is
uniformly distributed under fault-free conditions. As the S-
box computation is identical for these three bits, it suffices
to examine the distribution of one of them, say yj0. Recall
that the computation of yj0 is given by:

yj0 = nj
1k

j
0 ⊕ nj

0 ⊕ kj1k
j
0 ⊕ kj1 ⊕ kj0IV

j ⊕ kj0 ⊕ IVj

Note that in a SIFA attack, the key is fixed on the device.
Therefore, we must verify that, for each fixed key (kj0, k

j
1)

and each constant bit of the initialization vector (IVj), the
distribution of yj0 over all possible values of the nonce bits
(nj

0, n
j
1) is uniform. When IVj = 0, the evaluation of yj0

simplifies to:

yj0 =


nj
0 when (kj0, k

j
1) = (0, 0),

nj
0 ⊕ 1 when (kj0, k

j
1) = (0, 1),

nj
1 ⊕ nj

0 ⊕ 1 when (kj0, k
j
1) = (1, 0),

nj
1 ⊕ nj

0 ⊕ 1 when (kj0, k
j
1) = (1, 1),

and when IVj = 1, it becomes:

yj0 =


nj
0 ⊕ 1 when (kj0, k

j
1) = (0, 0),

nj
0 when (kj0, k

j
1) = (0, 1),

nj
1 ⊕ nj

0 when (kj0, k
j
1) = (1, 0),

nj
1 ⊕ nj

0 ⊕ 1 when (kj0, k
j
1) = (1, 1),

Since nj
0 and nj

1 are uniformly distributed, it follows that yj0
is also uniformly distributed. Hence, the second assumption
is satisfied.

Third, we show that at least one of the computations of
yj0, yj+19

0 and yj+28
0 is unaffected by an instruction skip

(i.e., the fault). Recall that we exclusively focus on the 8-
bit implementation. To establish this, we demonstrate that
the bitsliced S-box computation never processes the data
involved in the computations of yj0, yj+19

0 and yj+28
0 within a

single instruction. In other words, the bits at the three indices
(j, j + 19, j + 28) of a word never appear in the same 8-
bit block (i.e., byte or register) in the 8-bit implementation.
We verify this for two practical bit arrangements used in

ASCON, with and without the interleaving technique, as
shown in Table VI and Table VII. Figure 5 illustrates the 8-
bit blocks in ASCON’s state when the interleaving technique
is not applied. One can verify that, for every j ∈ [0, 63], the
three indices never fall within the same 8-bit block. As a
result, skipping an instruction does not simultaneously affect
all three computations of yj0, yj+19

0 and yj+28
0 . Thus, the

third assumption is satisfied.

Byte 7 63 62 61 60 59 58 57 56
Byte 6 55 54 53 52 51 50 49 48
Byte 5 47 46 45 44 43 42 41 40
Byte 4 39 38 37 36 35 34 33 32
Byte 3 31 30 29 28 27 26 25 24
Byte 2 23 22 21 20 19 18 17 16
Byte 1 15 14 13 12 11 10 9 8
Byte 0 7 6 5 4 3 2 1 0

Table VI: Arrangement of 64-bit word into bytes. The posi-
tions corresponding to indices 0, 19 and 28 are highlighted
in red.

Byte 7 63 55 47 39 31 23 15 7
Byte 6 62 54 46 38 30 22 14 6
Byte 5 61 53 45 37 29 21 13 5
Byte 4 60 52 44 36 28 20 12 4
Byte 3 59 51 43 35 27 19 11 3
Byte 2 58 50 42 34 26 18 10 2
Byte 1 57 49 41 33 25 17 9 1
Byte 0 56 48 40 32 24 16 8 0

Table VII: Arrangement of 64-bit word into bytes using
the interleaving technique. The positions corresponding to
indices 0, 19 and 28 are highlighted in red.

Figure 5: 8-bit blocks in the ASCON’s states (without using
the interleaving technique). Bits involved in the computa-
tions of yj0, yj+19

0 , yj+28
0 and zj0 are highlighted in gray.

Figure 6: Pr[zj0 = 1|ξ = 0] with increasing number of
ineffective faults.

To empirically validate our analysis, we compute the
probabilities of the intermediate value zj0 taking values 0 and
1, based on the ineffective faults simulated in the previous
section. The results are shown in Figure 6. As observed,
the empirical probabilities gradually converge to a uniform
value of 0.5 as the number of ineffective faults increases.

VI. CONCLUSION

In this work, we provide a more in-depth analysis of
the SIFA-based attack strategy on authenticated encryption
schemes proposed by Dobraunig et al. [4], with a particular
focus on instruction skip as the fault method. We show
that the probability of achieving an ineffective fault depends
on the type of instruction and the device architecture.
Notably, skipping an XOR instruction in a 32-bit and 64-
bit architectures is unlikely to result in an ineffective fault.
Furthermore, we formally show that the intermediate value
at the attack point can unexpectedly remain unbiased under
ineffective faults. Both findings highlight the cases where
SIFA becomes inapplicable.

One limitation of this work is that the modeling of in-
struction skip scenarios in Section IV may not be exhaustive.
In practice, other instructions, such as OR or BIC on ARM
architectures, could also be used. Another limitation is that
we focus only on SIFA failures with the attack strategy
proposed by [4]. A modification of this strategy might lead
to a successful attack. For example, Figure 5 suggests that
targeting an intermediate value at the S-box output could be
a promising alternative. We leave the exploration of such
cases for future work.

Our findings also open up a research question: Can we
leverage insights from the uniformity of the intermediate
value, as analyzed in Section V, to design a generic im-
plementation method that mitigates or resists SIFA?

ACKNOWLEDGMENT

This work was supported by the French Agence Nationale
de la Recherche through the grant ANR-22-CE39-0008
(project PROPHY).

REFERENCES

[1] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the impor-
tance of checking cryptographic protocols for faults (extended
abstract),” in EUROCRYPT’97, ser. LNCS, W. Fumy, Ed., vol.
1233. Springer, Berlin, Heidelberg, May 1997, pp. 37–51.

[2] E. Biham and A. Shamir, “Differential fault analysis of secret
key cryptosystems,” in CRYPTO’97, ser. LNCS, B. S. Kaliski,
Jr., Ed., vol. 1294. Springer, Berlin, Heidelberg, Aug. 1997,
pp. 513–525.

[3] D. Saha and D. R. Chowdhury, “EnCounter: On breaking the
nonce barrier in differential fault analysis with a case-study
on PAEQ,” in CHES 2016, ser. LNCS, B. Gierlichs and A. Y.
Poschmann, Eds., vol. 9813. Springer, Berlin, Heidelberg,
Aug. 2016, pp. 581–601.

[4] C. Dobraunig, S. Mangard, F. Mendel, and R. Primas, “Fault
attacks on nonce-based authenticated encryption: Application
to Keyak and Ketje,” in SAC 2018, ser. LNCS, C. Cid and
M. J. Jacobson, Jr., Eds., vol. 11349. Springer, Cham, Aug.
2019, pp. 257–277.

[5] C. Dobraunig, M. Eichlseder, T. Korak, S. Mangard,
F. Mendel, and R. Primas, “SIFA: Exploiting ineffective
fault inductions on symmetric cryptography,” IACR TCHES,
vol. 2018, no. 3, pp. 547–572, 2018. [Online]. Available:
https://tches.iacr.org/index.php/TCHES/article/view/7286

[6] C. Dobraunig, M. Eichlseder, H. Groß, S. Mangard,
F. Mendel, and R. Primas, “Statistical ineffective fault at-
tacks on masked AES with fault countermeasures,” in ASI-
ACRYPT 2018, Part II, ser. LNCS, T. Peyrin and S. Galbraith,
Eds., vol. 11273. Springer, Cham, Dec. 2018, pp. 315–342.

[7] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche,
“The Keccak SHA-3 submission,” https://keccak.team/files/
Keccak-submission-3.pdf, 2011.

[8] G. Bertoni, J. Daemen, M. Peeters, G. V. Assche, and R. V.
Keer, “CAESAR submission: Keyak v2,” https://keccak.team/
files/Keyakv2-doc2.2.pdf, 2016.

[9] ——, “CAESAR submission: Ketje v2,” https://keccak.team/
files/Ketjev2-doc2.0.pdf, 2016.

[10] C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer,
“Ascon v1.2: Lightweight authenticated encryption and hash-
ing,” Journal of Cryptology, vol. 34, no. 3, p. 33, Jul. 2021.

[11] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche,
“Duplexing the sponge: Single-pass authenticated encryption
and other applications,” in SAC 2011, ser. LNCS, A. Miri and
S. Vaudenay, Eds., vol. 7118. Springer, Berlin, Heidelberg,
Aug. 2012, pp. 320–337.

[12] C. Clavier, “Secret external encodings do not prevent transient
fault analysis,” in CHES 2007, ser. LNCS, P. Paillier and
I. Verbauwhede, Eds., vol. 4727. Springer, Berlin, Heidel-
berg, Sep. 2007, pp. 181–194.

[13] T. Fuhr, É. Jaulmes, V. Lomné, and A. Thillard, “Fault attacks
on AES with faulty ciphertexts only,” in 2013 Workshop
on Fault Diagnosis and Tolerance in Cryptography, Los
Alamitos, CA, USA, August 20, 2013, W. Fischer and
J. Schmidt, Eds. IEEE Computer Society, 2013, pp. 108–118.
[Online]. Available: https://doi.org/10.1109/FDTC.2013.18

[14] C. Dobraunig, M. Eichlseder, T. Korak, V. Lomné, and
F. Mendel, “Statistical fault attacks on nonce-based authenti-
cated encryption schemes,” in ASIACRYPT 2016, Part I, ser.
LNCS, J. H. Cheon and T. Takagi, Eds., vol. 10031. Springer,
Berlin, Heidelberg, Dec. 2016, pp. 369–395.

https://tches.iacr.org/index.php/TCHES/article/view/7286
https://keccak.team/files/Keccak-submission-3.pdf
https://keccak.team/files/Keccak-submission-3.pdf
https://keccak.team/files/Keyakv2-doc2.2.pdf
https://keccak.team/files/Keyakv2-doc2.2.pdf
https://keccak.team/files/Ketjev2-doc2.0.pdf
https://keccak.team/files/Ketjev2-doc2.0.pdf
https://doi.org/10.1109/FDTC.2013.18

	Introduction
	Background
	Ascon
	Statistical Ineffective Fault Attacks (SIFA)
	SIFA on Nonce-based Authenticated Encryption

	SIFA on Ascon
	Ineffective faults with instruction skip
	Main idea
	Skipping an XOR
	Skipping an AND
	Skipping a NOT

	Application to Ascon
	Discussion

	Uniformity of intermediate value
	Main idea
	Application to Ascon

	Conclusion
	References

