
Correlation Power Analysis on Ascon with Multi-bit Selection Function

Viet Sang Nguyen a , Vincent Grosso b , Pierre-Louis Cayrel c

Université Jean Monnet Saint-Etienne, CNRS, Institut d Optique Graduate School, Laboratoire Hubert Curien UMR 5516,
F-42023 Saint-Etienne, France

{viet.sang.nguyen, vincent.grosso, pierre.louis.cayrel}@univ-st-etienne.fr

Keywords: Correlation Power Analysis, Selection Function, Ascon.

Abstract: Ascon has recently been selected by NIST as the new standard for lightweight cryptography. This highlights
the need to evaluate its resilience against implementation attacks such as Correlation Power Analysis (CPA).
Traditional CPA on Ascon uses a 1-bit selection function, modeling power consumption based on a single bit
of an machine word. However, actual power leakage depends on the entire word. Therefore, the hypothesized
power consumption aligns better with the measured values when more bits of the word are involved in the
selection function. This paper investigates the use of multi-bit selection functions in CPA on Ascon. We
show that the bitsliced-oriented design of Ascon leads the multi-bit selection functions to produce a group of
key candidates with high correlations, rather than a single candidate as typically expected in CPA. Through
theoretical analysis and experimental validation, we examine this behavior in detail. Based on these insights,
we propose an efficient key recovery algorithm tailored for the multi-bit selection functions. Our results
demonstrate that this approach significantly reduces the number of CPA runs required for full key recovery.

1 INTRODUCTION

Nowadays, small computing devices like RFID tags,
sensors, and smart cards are becoming increasingly
widespread. Although the Advanced Encryption
Standard (AES, 2001) is a highly reliable and se-
cure cipher, it is often too resource-intensive for de-
ployment in such constrained environments. In this
context, NIST initiated a competition to look for a
new lightweight cryptography standard. In February
2023, NIST announced that Ascon was selected to be
standardized. Before that, Ascon had also been in-
cluded in the final portfolio of the CAESAR competi-
tion. The rigorous evaluations conducted during both
selection processes have solidified confidence in As-
con’s security under the traditional black-box model,
where the adversary can only access the inputs and
outputs.

However, such a model does not always capture
the security for physical implementations. When
deployed in embedded devices, cryptographic algo-
rithms can be vulnerable to power analysis attacks,
a potent category of side-channel attacks that ex-
ploit the power consumption of the devices during

a https://orcid.org/0009-0004-2939-8478
b https://orcid.org/0000-0002-3874-7527
c https://orcid.org/0000-0002-6708-868X

algorithm execution. Since the introduction of Dif-
ferential Power Attack (DPA) (Kocher et al., 1999),
power analysis attacks have emerged as a prominent
research area. DPA distinguishes the correct key
candidate from the incorrect ones by the difference
of means. Correlation Power Analysis (CPA) (Brier
et al., 2004), a variant of DPA, leverages a specific
power consumption model, such as Hamming weight,
and uses Pearson correlation to identify the correct
key candidate. CPA is a versatile and powerful at-
tack, as it requires only the observation of power con-
sumption leakages during the execution of the crypto-
graphic algorithm. Detailed knowledge of the device
is not needed. Knowing the algorithm that is executed
by the device is usually sufficient. The goal of CPA
is to recover the key through a statistical analysis of
key-dependent power leakages.

So far, CPA attacks for Ascon have received rel-
atively little attention. The first successful CPA at-
tack was presented in (Samwel and Daemen, 2017)
targeting a noisy hardware implementation. A no-
table contribution of (Samwel and Daemen, 2017) is
the development of an effective selection function for
computing the intermediate variable targeted by the
attack. Unlike the popular choice of the S-box out-
put in CPA attacks on AES, selecting a suitable func-
tion for Ascon is more complex due to the bitsliced-
oriented design. In fact, directly using the S-box



output as the selection function in Ascon can result
in a failed CPA attack, as evidenced in (Ramezan-
pour et al., 2020). Samwel and Daemen constructed
their selection function through a careful analysis of
how information leaks during computation. Using the
same selection function, the CPA attacks in (Roussel
et al., 2023; Weissbart and Picek, 2023) also success-
fully recovered the key. These attacks targeted a hy-
brid CMOS/MRAM hardware implementation and an
ARMv7m software implementation, respectively.

In the design of Ascon, the state is represented by
64-bit variables. Depending on the device architec-
ture, a 64-bit variable can be implemented using mul-
tiple smaller machine words, such as 8-bit or 32-bit
words. While effective, the selection function pro-
posed by Samwel and Daemen is limited to operate on
a single bit (referred to as the 1-bit selection function
hereafter). In other words, the power consumption
hypotheses are modeled based solely on the value of
a single bit within a machine word. However, in prac-
tice, the leaked information depends on the value of
the entire machine word (Brier et al., 2004; Tunstall
et al., 2007). As a result, the 1-bit selection func-
tion may not fully exploit all available leakage in the
power consumption traces.

Contributions. In this paper, we explore the fea-
sibility of employing multi-bit selection functions to
CPA attacks on Ascon. We begin by extending the 1-
bit selection function proposed by Samwel and Dae-
men to operate on multiple bits. Our findings reveal
that, due to the bitsliced-oriented design of the Sbox
implementation, using multi-bit selections function
results in a small group of key candidates with high
correlations, rather than a single candidate as typi-
cally expected in CPA. Through both theoretical anal-
ysis and experimental validation, we provide a com-
prehensive examination of the underlying causes of
this behavior.

Second, based on the insights from our analy-
sis, we propose an efficient algorithm to identify the
correct key candidate when employing multi-bit se-
lection functions. We show that the multi-bit ap-
proach significantly reduces the number of CPA runs
required for full key recovery. Specifically, the num-
ber of CPA runs is reduced to 26 and 19 for 2-bit and
3-bit selection functions, respectively, compared to 48
for 1-bit selection function. Additionally, this also
facilitates the application of second-order success in
CPA, i.e., choosing the top two candidates with the
highest correlations.

For the sake of reproducibility, we publish
the source code of the experiments as well as
the traces at: https://github.com/nvietsang/

multibitcpa-ascon.

Outline. This paper is organized as follows. Sec-
tion 2 provides the background knowledge. Section
3 presents the extension from 1-bit to multi-bit selec-
tion function. Section 4 provides an efficient key re-
covery algorithm for CPA using a multi-bit selection.
Section 5 discusses countermeasures and future work,
and concludes our work.

2 PRELIMINARIES

In this section, we begin by briefly outlining the prin-
ciple of the Correlation Power Analysis (CPA) attack.
We then provide the overview of the Ascon cipher.
Next, we recall the 1-bit selection function proposed
by Samwel and Daemen, which is the foundation for
our extension to a multi-bit selection function. Lastly,
we describe the experimental setup and the device
used in our experiments.

2.1 CPA attack

In a CPA attack, the attacker analyzes the dependence
between the power consumption at specific points in
time and the data being processed. The attack in-
volves the following five steps:

• Choose an intermediate variable as the attack
point. This variable should be a function f (d,k),
referred to as the selection function, which de-
pends on part of the key k and the known non-
constant data d (e.g., plaintext).

• Measure the power consumption. Let the de-
vice execute the algorithm ℓ times with different
inputs. For each execution, the attacker records
the data value d involved in the selection function
and a power trace of s samples. This process re-
sults in a vector of data values d = (d1, . . . ,dℓ),
and a power trace matrix T of size ℓ× s.

• Calculate hypothetical intermediate values.
Let k = (k1, . . . ,kp) represent the p possible key
candidates. Using the selection function f (d,k),
the attacker calculates the hypothetical intermedi-
ate values for each combination of d and k. This
produces a matrix V of size ℓ× p.

• Derive hypothetical power consumption val-
ues. The attacker uses a leakage model to map
each value in V to a hypothetical power consump-
tion value. In this work, we choose the Hamming
weight model. This step produces a hypothetical
power consumption matrix H of size ℓ× p.



• Compare hypothetical and measured power
values. The attacker uses the Pearson’s correla-
tion coefficient to compare the hypothetical power
consumption values with the measured power
traces. Specifically, he calculates the correlation
between each column hi of H and each column t j
of T. The correlation is expressed as:

ri, j =
∑
ℓ
u=1

(
hu,i−hi

)
(tu, j− t j)√

∑
ℓ
u=1

(
hu,i−hi

)2
√

∑
ℓ
u=1 (tu, j− t j)

2
.

Here, hu,i and tu, j (and their respective means hi
and t j) denote the u-th elements of the columns hi
and t j. The resulting matrix R, of size p× s, con-
tains the correlation coefficient ri, j for each key
candidate and trace sample.

The key can be recovered based on the fact that
the higher value of ri, j indicates the better match be-
tween the columns hi and t j. Let ck denote the index
of the correct key kck in the vector k, and ct denote
the index of the power consumption values tct, which
depend on the intermediate values vck. The columns
hck and tct should have a strong correlation. Conse-
quently, the highest value rck,ct in the matrix R re-
veals the indexes of the correct key ck and the corre-
sponding location ct.

2.2 Ascon

Ascon (Dobraunig et al., 2021) is a suite of Au-
thenticated Encryption with Associated Data (AEAD)
and hashing algorithms based on the duplex sponge
construction (Bertoni et al., 2012b). This paper fo-
cuses on the recommended authenticated cipher vari-
ant, Ascon-128 (referred to simply as Ascon here-
after). Figure 1 illustrates the encryption process.
Its inputs include a key K of 128 bits, a nonce N of
128 bits, an initialization vector IV, associated data
A1, . . . ,As, each of 64 bits, and plaintexts P1, . . . ,Pt ,
each of 64 bits. It produces as output a tag T of 128
bits and ciphertexts C1, . . . ,Ct , each of 64 bits. The
tag T is used during the decryption process to verify
the authenticity of the ciphertexts.

The permutations, denoted by pa and pb, form the
core of the Ascon construction. These permutations
consist of a = 12 rounds and b = 6 rounds, respec-
tively. Each round is composed of three steps op-
erating on a 320-bit state: (1) addition of constants,
(2) substitution layer (S-box), and (3) linear diffu-
sion layer. The three steps are depicted in Figure 2.
The 320-bit state is divided into five 64-bit variables,
which can be stored in one or more smaller-sized
words (or registers in hardware). This design facili-
tates the transition from the mathematical description

to practical and efficient implementations.1

Let x0, . . . ,x4 represent the five 64-bit variables of
the round input. In the first step, a round constant
is added to the rightmost eight bits of x2. Since the
constant addition step is not relevant to our attack, we
simplify the notation by continuing to denote the out-
put of the first step as x0, . . . ,x4. The second step in-
volves a non-linear transformation applied to on five
bits, with one bit taken from each variable of the first
step’s output x0, . . . ,x4. Let y0, . . . ,y4 represent the
output state of the S-box, and let 1 (in bold) denote
a variable filled with 64 bit 1s. The algebraic nor-
mal form (ANF) of the S-box, with all operations per-
formed on the full 64-bit variables (in bitsliced form)
can be expressed as:

y0 = x4x1⊕ x3⊕ x2x1⊕ x2⊕ x1x0⊕ x1⊕ x0,

y1 = x4⊕ x3x2⊕ x3x1⊕ x3⊕ x2x1⊕ x2⊕ x1⊕ x0,

y2 = x4x3⊕ x4⊕ x2⊕ x1⊕1,
y3 = x4x0⊕ x4⊕ x3x0⊕ x3⊕ x2⊕ x1⊕ x0,

y4 = x4x1⊕ x4⊕ x3⊕ x1x0⊕ x1.
(1)

At the beginning of the initialization phase (Fig-
ure 1), the 64-bit initialization vector IV is stored in
x0. The two 64-bit halves of the key, (k0,k1) = K,
are stored in x1 and x2. The two 64-bit halves of the
nonce, (n0,n1) = N, are stored in x3 and x4. The S-
box computation during the first round of the initial-
ization phase, where our attack focuses on, can thus
be written as follows (with the constant addition step
omitted for simplicity):

y0 = n1k0⊕n0⊕ k1k0⊕ k1⊕ k0IV⊕ k0⊕IV,

y1 = n1⊕n0k1⊕n0k0⊕n0⊕ k1k0⊕ k1⊕ k0⊕IV,

y2 = n1n0⊕n1⊕ k1⊕ k0⊕1,
y3 = n1IV⊕n1⊕n0IV⊕n0⊕ k1⊕ k0⊕IV,

y4 = n1k0⊕n1⊕n0⊕ k0IV⊕ k0.
(2)

The third step, linear diffusion layer, applies a ro-
tation to each variable at the S-box output twice. The
rotated variables are then XOR-ed with the original
one. Let z0, . . . ,z4 denote the output of the linear dif-
fusion layer. The linear functions applied to each vari-
able are defined as:

z0 = y0⊕ (y0 ≫ 19)⊕ (y0 ≫ 28),
z1 = y1⊕ (y1 ≫ 61)⊕ (y1 ≫ 39),
z2 = y2⊕ (y2 ≫ 1)⊕ (y2 ≫ 6),
z3 = y3⊕ (y3 ≫ 10)⊕ (y3 ≫ 17),
z4 = y4⊕ (y4 ≫ 7)⊕ (y4 ≫ 41).

(3)

1Implementations for 8-bit, 32-bit, 64-bit architectures
can be found at https://github.com/ascon/ascon-c



Figure 1: Encryption in Ascon (Dobraunig et al., 2021).

(a) Three steps of a round (b) An S-box computation.
Figure 2: Each step in a round (Dobraunig et al., 2021).

2.3 Selection function

This work relies on the selection function in the at-
tack of (Samwel and Daemen, 2017). The output of
the linear diffusion layer is chosen as the attack point.
The selection function is derived by analyzing how in-
formation leaks through the S-box computation. As in
(Samwel and Daemen, 2017), we only focus on y0,y1
and y4 in Equation 2 as their computations contain
non-linear terms between the key and the nonce.

We consider y4 as an example. Let the superscript
j denote the index of the j-th bit of a 64-bit variable,
where 0≤ j ≤ 63. The j-th bit of y4 is computed as:

y j
4 = n j

1(k
j
0⊕1)⊕n j

0⊕ k j
0IV

j⊕ k j
0.

Following Bertoni et al. (Bertoni et al., 2012a), the
term k j

0IV
j⊕k j

0 can be removed because, for the fixed
correct key in the device, this term is independent of
the nonce and contributes a constant amount to the
activity that drives the targeted power consumption of
the register containing y4. This removal results in ỹ j

4,
where:

ỹ j
4 = n j

1(k
j
0⊕1)⊕n j

0. (4)

We next account the linear diffusion operation.
Recall from Equation 1 that the 64-bit output variable

z4 of this layer is computed as:

z4 = y4⊕ (y4 ≫ 7)⊕ (y4 ≫ 41).

The computation of the j-th bit of z4 (0≤ j≤ 63) thus
is:

z j
4 = y j

4⊕ y j+57
4 ⊕ y j+23

4 . (5)
The additions j + 57 and j + 23 are implicitly taken
modulo 64. Applying Equation 4 to Equation 5 results
in the selection function z̃ j

4, which is used to recover
k0 (three bits at a time):

z̃ j
4 =

(
n j

1(k
j
0⊕1)⊕n j

0

)
⊕
(

n j+57
1 (k j+57

0 ⊕1)⊕n j+57
0

)
⊕
(

n j+23
1 (k j+23

0 ⊕1)⊕n j+23
0

)
.

(6)

Similarly, we can derive the selection functions z̃ j
0

for recovering k0, and z̃ j
1 for recovering k1. The de-

tailed derivation steps are provided in Appendix A.
Here, we present the final result of z̃ j

1:

z̃ j
1 =

(
n j

0(k
j
01⊕1)⊕n j

1

)
⊕
(

n j+3
0 (k j+3

01 ⊕1)⊕n j+3
1

)
⊕
(

n j+25
0 (k j+25

01 ⊕1)⊕n j+25
1

)
,

(7)



where k j
01 = k j

0⊕ k j
1. Note that k j

1 is not directly re-
covered, instead, k j

01 is recovered when z̃ j
1 is used as

the selection. Then, k j
1 is derived as k j

1 = k j
01 ⊕ k j

0,
with k j

0 recovered from the CPA using z̃ j
4 as the selec-

tion function. In this following sections, we will use
Equation 6 and Equation 7 as the selection functions
to recover the two key halves k0 and k1.

2.4 Experiment setup

We use a ChipWhisperer Lite board, integrated with
an STM32F303 32-bit ARM target microcontroller,
to record the power consumption traces. The device
operates with a default clock frequency of 7.37 MHz.
The ChipWhisperer board is connected to a MacBook
Air M1 with 16 GB of RAM via a USB cable. To cre-
ate a scenario as realistic as possible, we record the
power traces during the executions of the 32-bit opti-
mized ARMv6 implementation by the Ascon team,2

which is well-suited to our microcontroller.

3 MULTI-BIT SELECTION
FUNCTION

Using Equation 6 and Equation 7 as the selection
functions, as in some successful CPA attacks (Samwel
and Daemen, 2017; Weissbart and Picek, 2023; Rous-
sel et al., 2023), means to exploit the leakages of sin-
gle bits z j

4 and z j
1 (in 64-bit variables z4 and z1). These

leakages are modeled as the Hamming weight of z̃ j
4

and z̃ j
1, denoted by HW(z̃ j

4) = z̃ j
4 and HW(z̃ j

1) = z̃ j
1,

since the Hamming weight of a bit is the bit value it-
self. In software implementations, the 64-bit variables
z4 and z1 are usually implemented by eight 8-bit or
two 32-bit words, depending on device architecture.
The activity of these words (load/store) is known to
leak information about their contained data through
power consumption. The ideal attack scenario is to
consider the entire word length to make hypotheses.
In this scenario, the hypothetical power consumption
tends to highly correlate to the power traces. For ex-
ample, using all 8 bits of an S-box output as the in-
termediate variable in a CPA attack on an 8-bit AES
implementation is more efficient than using only the
most significant bit (Brier et al., 2004). However, this
makes the attack computationally infeasible for large
word size such as 32 bits, since the CPA needs to be
performed a large number of times.

2https://github.com/ascon/ascon-c/tree/v1.
2/crypto_aead/ascon128v12/armv6

The CPA attacks on Ascon in the literature
(Samwel and Daemen, 2017; Weissbart and Picek,
2023; Roussel et al., 2023) only use one bits z j

4 and
z j

1 of z4 and z1 for the hypothetical power consump-
tion. These attacks were still successful because, as
pointed out by Brier et al. (Brier et al., 2004), a par-
tial correlation still exists if only a part of the word is
used. Specifically, the partial correlation coefficient
ρd calculated from d independent bits among m bits
(d ≤ m) and the correlation coefficient ρm calculated
from all m bits has a the following relation:

ρd = ρm

√
d
m
.

The attacks in (Samwel and Daemen, 2017; Weissbart
and Picek, 2023; Roussel et al., 2023) correspond to
d = 1. The above equation also indicates that increas-
ing the value of d results in the partial correlation ρd

becoming closer to ρm. In this section, we extend z j
4

and z j
1 in Equation 6 and Equation 7 to multi-bit se-

lection functions (d > 1) for CPA attacks on software
implementations (in common architectures where m
can be 8, 16, 32 or 64 bits). In Subsection 3.1, we
provide the details of the extension and its advantages.
Then, we present the experiment for this extension in
Subsection 3.2 and discuss the results in Subsection
3.3.

3.1 Extension method

We consider the selection function z̃ j
4 in Equation 6

here. The same approach is applied for z̃ j
1. We present

the practical results for both of them. Let z j.. j+d
4 de-

note d bits of the 64-bit variable z4, from index j to
j + d − 1 (d ≥ 1). We extend the 1-bit function z̃ j

4
(Equation 6) to the d-bit function z̃ j.. j+d

4 as follows:

z̃ j.. j+d
4 =

(
n j.. j+d

1 (k j.. j+d
0 ⊕1)⊕n j.. j+d

0

)
⊕
(

n j+57.. j+57+d
1 (k j+57.. j+57+d

0 ⊕1)⊕n j+57.. j+57+d
0

)
⊕
(

n j+23.. j+23+d
1 (k j+23.. j+23+d

0 ⊕1)⊕n j+23.. j+23+d
0

)
.

(8)

For better understanding, Figure 3 depicts the
bit locations involving in the computation of z̃ j.. j+d

4 .
Using this d-bit selection function, we can re-
cover 3d bits of the key, k j.. j+d

0 , k j+57.. j+57+d
0 , and

k j+23.. j+23+d
0 , after each CPA run. This means that

the higher value of d, the more recovered key bits.
These 3d key bits are indexed by the following set
determined by the value of j:

{ j, . . . , j+d−1}∪{ j+57, . . . , j+56+d}
∪{ j+23, . . . , j+22+d},



Number of bits
Selection function d 1 2 3
Key recovery 3d 3 6 9
Involved nonce bits 6d 6 12 18
Number of CPA runs 48 26 19

Table 1: Number of CPA runs for the full key recovery.

where 0 ≤ j ≤ 63 (with additions implicitly mod-
ulo 64). To recover the full 64-bit k0, we need to
run the CPA multiple times with different values of
j such that the recovered key bit indexes cover the
range from 0 to 63. This implies that the effort re-
quired for the attack can be minimized by determining
the minimum number of CPA runs. In other words,
we try to minimize the overlaps among the recovered
key bit indexes. For example, when d = 2, perform-
ing CPA with j = 0 and j = 34 leads to the recov-
ered of the key bits at indexes (0,1,57,58,23,24) and
(34,35,27,28,57,58). We see that the bits indexed by
57 and 58 are recovered twice, which is redundant.

To address this, we formalize a set cover problem
and employ a SAT solver to solve it.3 A similar ap-
proach is applied to find the minimum number of CPA
runs for the full 64-bit k1 recovery. The total number
of CPA runs for recovering the full 128-bit key is the
sum of those of k0 and k1. Appendix B includes the
sets of indexes j from our finding.

Table 1 compares the results for different values
of d. While our extension is generic and works with
any d, this paper focuses on specific cases where
d ∈ {1,2,3}. This is due to the need of traversing all
26d possible nonce values to evaluate the distribution
of hypothetical power consumption for our analyses
in the next sections. This becomes computationally
infeasible on classical computers when d ≥ 4. We
will detail this issue in the subsequent section.

From Table 1, we can infer the following ad-
vantages of CPA using multi-bit selection functions
(d > 1):

• The number of CPA runs needed is significantly
reduced. Specifically, for d = 1, 48 CPA runs are
required, while this number decreases to 26 for
d = 2 and 19 for d = 3.

• As a result of the reduction in the number of CPA
runs, using multi-bit selection functions enables
second-order success. This involves selecting the
top two candidates with the highest correlation af-
ter each CPA run, rather than just the single top
candidate. A brute-force search is then performed
across these candidates to determine the correct
key. The brute-force space is 226 for d = 2 and 219

3The source code is included in https://github.
com/nvietsang/multibitcpa-ascon

for d = 3, both of which are computationally fea-
sible. In contrast, the brute-force space for d = 1,
248, likely remains inefficient on a classical com-
puter.

3.2 Experimental results

We now conduct an experiment to validate our exten-
sion. We perform the CPA using selection functions
corresponding to d = 1, d = 2 and d = 3 and mea-
sure the success rate for each case. Measuring suc-
cess rate for the full key recovery is time-consuming,
as it requires repeating the analysis numerous times
(typically a hundred or more) for various numbers of
traces. Instead, we estimate this success rate by fo-
cusing on the recovery of 3d bits of k0 and 3d bits
of k1. Specifically, we repeat the 3d-bit key recov-
eries 100 times for k0 and k1 with different indexes
j. These two success rates for these partial recoveries
are each raised to the power of the number of CPA
runs needed, and then multiplied together to estimate
the success rate for the full key recovery.

We present in Figure 4 the success rates corre-
sponding to selection functions with different values
of d. In this experiment, the CPA uses the first-order
success, i.e., the key candidate with the highest cor-
relation is chosen as the best candidate. For d = 1,
the success rate begins to converge toward 100% at
around 5600 traces. However, for d = 2 and d = 3,
we observe an unexpected outcome: the success rates
remain at 0% regardless the number of traces. This
anomaly prompts a deeper investigation into the un-
derlying cause of this behavior.

3.3 Factors influencing performance

We now investigate the cause behind the poor perfor-
mance of multi-bit selection functions, as observed in
Figure 4. While we detail here the analysis for d = 2,
the same analysis approach is applicable for d > 2.
We first consider a CPA run and look at the corre-
lations between the hypothetical power consumption
for each key candidate and the recorded power traces.
The multi-bit selection function with d = 2 is sup-
posed to recover 3d = 6 key bits after each CPA run.
There are thus 26 = 64 possible key candidates.

Figure 5 shows the convergence of the correla-
tions for all key candidates as the number of traces
increases. It is evident that a small group of key can-
didates, containing the correct one, is distinguishable
from the rest. This behavior is unlike the traditional
case, where only the correct candidate exhibits a dis-
tinctly high correlation. Even when experimented
with a larger number of traces, this outcome remains



Figure 3: Illustration of d-bit selection function (Equation 8) for j = 0.

Figure 4: Success rates of the full key recovery for different
values of d.

Figure 5: Correlations for all key candidates over increasing
number of traces.

unchanged.
Table 2 shows the ranks of the key candidates cor-

responding to Figure 5, sorted by their correlations.
We can align that the distinct group includes 15 key
candidates. Notably, the correlation of the correct
candidate is not the highest and is close to those of
the other candidates in the group. Consequently, the
CPA picks the incorrect candidate at the top-ranked
choice, leading to the success rate of 0% as shown in

Rank Key Corr.
1 10 0.133
2 32 0.130
3 2 0.128
4 42 0.121
5 40 0.119
6 8 0.119
7 34 0.113
8 0 0.110
9 1 0.104

10 5 0.096
11 4 0.095
12 17 0.095
13 16 0.090
14 21 0.089
15 20 0.089
16 31 0.045
17 60 0.036
18 61 0.035
19 15 0.035
20 23 0.034
21 11 0.033
22 19 0.033
23 22 0.033
24 39 0.033
25 7 0.033
26 43 0.032
27 18 0.032
28 56 0.031
29 14 0.030
30 30 0.030
31 36 0.030
32 52 0.030

Rank Key Corr.
33 6 0.030
34 26 0.030
35 27 0.030
36 35 0.029
37 53 0.029
38 55 0.029
39 44 0.028
40 3 0.028
41 57 0.028
42 50 0.028
43 45 0.028
44 37 0.027
45 41 0.027
46 12 0.026
47 46 0.026
48 49 0.026
49 33 0.026
50 54 0.026
51 47 0.026
52 58 0.026
53 48 0.026
54 62 0.026
55 13 0.025
56 28 0.025
57 24 0.025
58 25 0.023
59 59 0.023
60 51 0.023
61 38 0.023
62 63 0.022
63 9 0.022
64 29 0.022

Table 2: Key candidates ranked by correlations at 10000
traces. The correct candidate is highlighted in blue.

Figure 4. However, this issue does not occur with the
CPA using the 1-bit selection function (d = 1), as its
success rate still converges to 100%. This suggests
that the root cause may lie in the differences between



the selection functions.

Figure 6: Correlations between distributions of all possible
key pairs when d = 1. Blue and white cells correspond to
correlation coefficient of 1 and 0, respectively.

Table 2 further indicates that, in addition to the
correct key, several incorrect candidates are also
highly correlated to the power traces. To investigate
this, we analyze the distributions generated by each
key candidate across all possible values of the asso-
ciated nonce bits. For every possible key pair, we
calculate the correlation of their distributions to de-
termine whether they are partially correlated. Figure
6 presents the results of this calculation for d = 1,
and Figure 7 presents the results for d = 2. It is clear
that, for d = 2, the distributions of some key pairs are
partially correlated (represented by light blue cells in
Figure 7). In contrast, this behavior does not occur for
d = 1. Furthermore, we observe that the small group
of key candidates with high correlations in the CPA
corresponds to the group of key candidates whose dis-
tributions are partially correlated to that of the cor-
rect key. For example, the top 15 candidates in Ta-
ble 2 align with the (light) blue cells in the first row
of Figure 7, indicating the correlations between cor-
rect key’s distribution (0 in this case) and those of the
other key candidates. This confirms the influence of
the partial correlations between the key candidates.

These partial correlations are absent for d = 1, im-
plying that the root cause lies in the extension of the
selection function to d > 1. Indeed, the extension can
be seen as concatenating multiple identical 1-bit se-
lection functions, which introduces the partial corre-
lations between the distributions of key candidates ob-
served when d > 1. In fact, this concatenation is un-
avoidable if we want to use multi-bit selection func-
tions due to the bitsliced-oriented design of Ascon.
Specifically, the S-box operates in the vertical dimen-
sion, taking 1 bit per 64-bit variable as input and pro-
ducing 1 bit per 64-bit variable as output (see Figure
2b). Meanwhile, the words (whose activities consume
power) store bits in the horizontal dimension, repre-
senting the bits within a 64-bit variable (see Figure
2a). In other words, the bits in a variable have the in-

volvement of multiple independent S-box operations.
Given the poor performance of the multi-bit selec-

tion functions compared to the 1-bit selection func-
tion, as shown in Figure 4, the question arises: is it
still possible to use them for key recovery? We will
give a positive answer for this question in the next
section.

4 EFFICIENT KEY RECOVERY
ALGORITHM

As established in the previous section, CPA with
multi-bit selection functions fails in key recovery due
to partial correlations among the distributions pro-
duced by many key candidates. In this section, we
show how these partial correlations can be utilized to
develop an efficient key recovery algorithm. The pro-
posed algorithm is described in detail in Subsection
4.1 and experimentally validated in Subsection 4.2.

4.1 Proposed algorithm

We use the case d = 2 for explanation of the algo-
rithm’s idea hereafter, however, the proposed algo-
rithm is generic and works with any d > 1. We present
the results for both d = 2 and d = 3 below. From
Figure 7, we observe that the distribution of each key
candidate is (partially) correlated to itself and those of
14 other candidates (15 non-white cells in each row).
These 15 candidates form a group which is unique for
each key candidate. For example, the groups corre-
sponding to the candidates 0 and 1, denoted by G [0]
and G [1], are:

G [0] = [0,1,2,4,5,8,10,16,17,20,21,32,34,40,42],
G [1] = [0,1,3,4,5,9,11,16,17,20,21,33,35,41,43].

We note that the total 23d groups, G [0], . . . ,G [23d −
1], can be precomputed from the correlation matrix of
distributions (as in Figure 7).

Let R be a ranking array containing all 23d key
candidates, sorted by descending correlations after the
classical CPA steps in Section 2. R[0] holds the candi-
date with the highest correlation (rank 1). An example
of R is the column of key candidates in Table 2. Let t
be the number of elements in each group G [k], where
0 ≤ k ≤ 23d −1. In our experiment, t = 15 for d = 2
and t = 169 for d = 3, and these values are the same
for all groups.

The core idea of the algorithm is to determine the
group G [k] that the top t candidates R[0], . . . ,R[t− 1]
most likely belong to. The candidate k is then re-
turned as the best choice for the correct key. We refer



Figure 7: Correlations between distributions of all possible key pairs when d = 2. Blue, light blue and white cells correspond
to correlation coefficient of 1, 0.5 and 0, respectively.

Data: set of traces T , number of bits d,
groups G , threshold t, success order o

Result: top o key candidates
R← classical CPA on T ;
S← [0,0, . . . ,0];
for i from 0 to t−1 do

for k from 0 to 23d−1 do
if R[i] ∈ G [k] then

S[k]← S[k]+1;
end

end
end
L← indexes of elements in S sorted by

descending scores;
L[0], . . . ,L[o−1];

Algorithm 1: Key recovery for CPA using multi-bit se-
lection functions (d > 1)

to t as a threshold in the algorithm. To measure the de-
gree of the matching between the top t candidates and
a group G [k], a score S[k] is used, for 0≤ k≤ 23d−1.
Each score S[k] ranges from 0 to t, where t denotes a
perfect match. Algorithm 1 presents the details of the
key recovery steps. In this algorithm, we use a param-
eter o for the success order. It returns o key candidates
with the top o highest scores in S.

Let us take an example where d = 2. Suppose
R contains 64 key candidates ranked as in Table 2.
By applying the scoring strategy described in Algo-
rithm 1, we obtain the scores shown in Table 3. Here,
S[0] = 15 is the highest score, implying that k = 0 is
the most likely correct key candidate. This is because
the elements R[0], . . . ,R[14] perfectly match the group
G [0]. This outcome aligns with our expectation, as
k = 0 is indeed the correct key.

Although our method is generic for any d > 1, a
bottleneck lies in the reliance on precomputed groups
G [k], where 0 ≤ k ≤ 23d − 1. This computation re-
quires determining the distribution of the selection
function output for all key candidates. Specifically, it
necessitates evaluating the selection function for each
of 26d associated nonce values and 23d key candi-
dates, resulting a time complexity of 29d . A high d
value makes this computation challenging for a clas-
sical computer. For instance, the time complexity
reaches 236 when d = 4, which may exceed the ca-
pabilities of a classical computer. Therefore, we limit
our experiments in the next section to d = 2 and d = 3,
which are computationally feasible on our personal
laptop.



Candidate k Score S[k]
0 15
1 8
2 8
3 2
4 8
5 8
6 2
7 2
8 8
9 2
10 8
11 2
12 2
13 2
14 2
15 2
16 8
17 8
18 2
19 2
20 8
21 8
22 2
23 2
24 2
25 2
26 2
27 2
28 2
29 2
30 2
31 2

Candidate k Score S[k]
32 8
33 2
34 8
35 2
36 2
37 2
38 2
39 2
40 2
41 8
42 2
43 8
44 2
45 2
46 2
47 2
48 2
49 2
50 2
51 2
52 2
53 2
54 2
55 2
56 2
57 2
58 2
59 2
60 2
61 2
62 2
63 2

Table 3: Scores of 64 key candidates for d = 2.

4.2 Experimental results

We now conduct an experiment to validate the pro-
posed key recovery algorithm. The experimental
setup is identical to that described in the previous sec-
tion. In particular, we reuse the same set of traces and
apply the proposed algorithm for multi-bit selection
functions (d = 2 and d = 3). For comparison, we also
perform an analysis using the classical CPA with the
1-bit selection function (d = 1).

Figure 8 shows the success rates of the full key
recovery using the d-bit selection functions with dif-
ferent values of d. For multi-bit selection functions
(d = 2 and d = 3), their success rates gradually con-
verge to 100% as the number of traces increases, in
contrast to the 0% success rates observed in Figure
4. Specifically, the successes rates reach 100% for
d = 2 with 7200 traces and for d = 3 with 8200 traces.
This demonstrates the effectiveness of our proposed
key recovery algorithm.

Nevertheless, compared to the 1-bit selection
function, the multi-bit selection functions require
more traces to achieve 100% success rates. Addition-

Figure 8: Full key recovery success rates after applying ef-
ficient algorithm for d = 2 and d = 3. The success order is
o = 1 for all cases.

ally, it can be observed that the convergence speed
decreases with increasing d. This is likely because
more traces are needed to make the correlations as-
sociated to a group of key candidates stand out from
the rest. A higher d corresponds to a bigger group.
Meanwhile, the 1-bit selection function only requires
the correlation of a single key candidates to stand out.

As discussed in Subsection 3.1, there are two main
advantages of using multi-bit selection functions, in-
cluding the significant reduction in the number of
CPA runs and the application of second-order success.
We now consider the latter. It can be seen that Algo-
rithm 1 is generic for o-order success. We conduct
an experiment for the case where o = 2 (i.e., second-
order) with d = 2 and d = 3. Figure 9 compares the
success rates for o = 2 and o = 1. As expected, the
success rates for o = 2 are higher than those for o = 1
in both cases.

5 CONCLUSION & DISCUSSION

In this paper, we extended the 1-bit selection function
to a multi-bit selection function. Initially, this exten-
sion caused the CPA to fail in identifying the correct
key candidate due to Ascon’s bitsliced-oriented de-
sign. To address this, we conducted a comprehensive
analysis from both theoretical and experimental per-
spectives to uncover the reasons behind this failure.
Leveraging the insights from this analysis, we pro-
posed an efficient key recovery algorithm tailored for
the multi-bit selection function. We further provided
experimental results demonstrating the effectiveness
of this algorithm. Additionally, we showed that the
multi-bit selection function offers advantages, includ-
ing a reduction in the number of CPA runs required
for full key recovery and the ability to apply second-
order success in CPA.



(a) d = 2

(b) d = 3
Figure 9: Full key recovery success rates with first- and
second-order successes for d = 2 and d = 3.

Countermeasures. CPA attacks exploit the depen-
dency between a device’s power consumption and in-
termediate values of the executed cryptographic al-
gorithms. A well-known mitigation strategy is to
eliminate or at least reduce this dependency. One
approach involves randomizing power consumption
by performing intermediate computations at differ-
ent time moments. This can be achieved by ran-
domly inserting dummy operations during execution
to disrupt the power trace alignment, or by shuffling
the operations (Kocher et al., 1999). Another widely
studied approach is masking intermediate values with
randomness (Chari et al., 1999; Goubin and Patarin,
1999), ensuring that power consumption is indepen-
dent of these intermediate values. This technique is
typically implemented at the algorithm level.

Future work. A potential direction for future work
is the development of a more efficient key recovery
algorithm for the multi-bit selection function. As dis-
cussed earlier, while our proposed algorithm is effec-
tive for key recovery, it becomes computationally in-
feasible for d > 3. Additionally, the resulting success
rates remain lower than those achieved with the 1-bit

selection function, while we expect that incorporat-
ing more bits into the hypotheses for power consump-
tion could improve success rates. A promising direc-
tion to address these challenges is exploring machine
learning-based and profiling-based techniques.

ACKNOWLEDGEMENTS

This work was supported by the French Agence Na-
tionale de la Recherche through the grant ANR-22-
CE39-0008 (project PROPHY).

REFERENCES

AES (2001). Advanced Encryption Standard (AES). Na-
tional Institute of Standards and Technology, NIST
FIPS PUB 197, U.S. Department of Commerce.

Bertoni, G., Daemen, J., Debande, N., Le, T.-H., Peeters,
M., and Van Assche, G. (2012a). Power analysis of
hardware implementations protected with secret shar-
ing. In 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture Workshops, pages
9–16.

Bertoni, G., Daemen, J., Peeters, M., and Van Assche, G.
(2012b). Duplexing the sponge: Single-pass authen-
ticated encryption and other applications. In Miri, A.
and Vaudenay, S., editors, SAC 2011, volume 7118 of
LNCS, pages 320–337. Springer, Berlin, Heidelberg.

Brier, E., Clavier, C., and Olivier, F. (2004). Correlation
power analysis with a leakage model. In Joye, M. and
Quisquater, J.-J., editors, CHES 2004, volume 3156 of
LNCS, pages 16–29. Springer, Berlin, Heidelberg.

Chari, S., Jutla, C. S., Rao, J. R., and Rohatgi, P. (1999). To-
wards sound approaches to counteract power-analysis
attacks. In Wiener, M. J., editor, CRYPTO’99, vol-
ume 1666 of LNCS, pages 398–412. Springer, Berlin,
Heidelberg.

Dobraunig, C., Eichlseder, M., Mendel, F., and Schläffer,
M. (2021). Ascon v1.2: Lightweight authenticated
encryption and hashing. Journal of Cryptology,
34(3):33.

Goubin, L. and Patarin, J. (1999). DES and differential
power analysis (the “duplication” method). In Koç,
Çetin Kaya. and Paar, C., editors, CHES’99, volume
1717 of LNCS, pages 158–172. Springer, Berlin, Hei-
delberg.

Kocher, P. C., Jaffe, J., and Jun, B. (1999). Differential
power analysis. In Wiener, M. J., editor, CRYPTO’99,
volume 1666 of LNCS, pages 388–397. Springer,
Berlin, Heidelberg.

Ramezanpour, K., Abdulgadir, A., Diehl, W., Kaps, J.-
P., , and Ampadu, P. (2020). Active and passive
side-channel key recovery attacks on Ascon. NIST
Lightweight Cryptography Workshop.

Roussel, N., Potin, O., Dutertre, J., and Rigaud, J. (2023).
Security evaluation of a hybrid CMOS/MRAM as-



con hardware implementation. In Design, Automa-
tion & Test in Europe Conference & Exhibition, DATE
2023, Antwerp, Belgium, April 17-19, 2023, pages 1–
6. IEEE.

Samwel, N. and Daemen, J. (2017). DPA on hardware im-
plementations of Ascon and Keyak. In Proceedings
of the Computing Frontiers Conference, CF’17, page
415–424, New York, NY, USA. Association for Com-
puting Machinery.

Tunstall, M., Hanley, N., McEvoy, R., Whelan, C., Murphy,
C., and Marnane, W. (2007). Correlation power anal-
ysis of large word sizes. http://www.geocities.
ws/mike.tunstall/papers/THMWMM.pdf.

Weissbart, L. and Picek, S. (2023). Lightweight but not
easy: Side-channel analysis of the ascon authenticated
cipher on a 32-bit microcontroller. Cryptology ePrint
Archive, Paper 2023/1598. https://eprint.iacr.
org/2023/1598.

APPENDIX A: SELECTION
FUNCTIONS

The j-th bit of y1 and y4 are computed as:

y j
0 = k j

0(n
j
1⊕1)⊕n j

0⊕ k j
0k j

1⊕ k j
0IV

j⊕ k j
1⊕IV j,

y j
1 = n j

0(k
j
1⊕ k j

0⊕1)⊕n j
1⊕ k j

1k j
0⊕ k j

1⊕ k j
0⊕IV j.

In y j
0, we remove k j

0k j
1⊕ k j

0IV
j⊕ k j

1⊕ IV j as they
contribute a constant amount to the power consump-
tion. For the same reason, k j

1k j
0⊕ k j

1⊕ k j
0⊕IV j is re-

moved from y j
1.

ỹ j
0 = k j

0(n
j
1⊕1)⊕n j

0,

ỹ j
1 = n j

0(k
j
01⊕1)⊕n j

1,

where k j
01 = k j

0⊕ k j
1.

Recall the linear operations applied on the y0 and
y1:

z0 = y0⊕ (y0 ≫ 19)⊕ (y0 ≫ 28),
z1 = y1⊕ (y1 ≫ 61)⊕ (y1 ≫ 39).

The j-th bit of z0 and z1 are thus computed as:

z j
0 = y j

0⊕ y j+36
0 ⊕ y j+45

0 ,

z j
1 = y j

1⊕ y j+3
1 ⊕ y j+25

1 .

We then apply the linear operations for ỹ j
0 and ỹ j

1:

z̃ j
0 =

(
k j

0(n
j
1⊕1)⊕n j

0

)
⊕
(

k j+36
0 (n j+36

1 ⊕1)⊕n j+36
0

)
⊕
(

k j+45
0 (n j+45

1 ⊕1)⊕n j+45
0

)
.

(9)

z̃ j
1 =

(
n j

0(k
j
01⊕1)⊕n j

1

)
⊕
(

n j+3
0 (k j+3

01 ⊕1)⊕n j+3
1

)
⊕
(

n j+25
0 (k j+25

01 ⊕1)⊕n j+25
1

)
.

(10)

APPENDIX B: KEY INDEXES FOR
CPA RUNS

The script of the SAT problem is included in https:
//github.com/nvietsang/multibitcpa-ascon.
We present here the minimum number of CPA runs
for different values of d.
For d = 1:

• 24 indexes j for k0 recovery: 1, 6, 7, 9, 11, 12, 17,
22, 23, 25, 27, 28, 33, 34, 38, 39, 43, 44, 48, 49,
54, 55, 59, 60.

• 24 indexes j for k1 recovery: 3, 5, 6, 7, 13, 15, 17,
22, 24, 26, 32, 33, 34, 39, 41, 43, 45, 50, 51, 52,
53, 58, 60, 62.

For d = 2:

• 12 indexes j for k0 recovery: 3, 9, 14, 19, 24, 30,
35, 41, 46, 51, 56, 62.

• 14 indexes j for k1 recovery: 2, 10, 11, 20, 22, 28,
30, 37, 39, 43, 46, 48, 55, 57.

For d = 3:

• 10 indexes j for k0 recovery: 20, 23, 33, 36, 39,
42, 45, 48, 51, 60.

• 9 indexes j for k1 recovery: 1, 7, 13, 20, 29, 32,
39, 48, 58.


