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CryptoExperts

✦ Founded in 2009, based in Paris

✦ Research team & service company

✦ Strong focus on cryptography & security of embedded systems

✦ Services of custom crypto design, implementation, evaluation

✦ Software & technologies
‣ Secure embedded crypto libraries
‣ White-box cryptography
‣ Fully Homomorphic Encryption

✦ Website: www.cryptoexperts.com
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Context

✦ A valid transaction is signed by ECDSA

✦ One has control over coins if she has the private key
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Manage Keys

Create transactions

Sign transactions

Broadcast transactions

Responsibilities of a wallet

→Key protection is extremely important



Context

✦ Many wallets “help” users to manage keys

✦ Risk: keys are stored on smartphone (open environment)
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→Need a secure wallet app



White-Box Cryptography
✦ Hide the secret key in an obfuscated cryptographic implementation

✦ An attacker is assumed to have 
‣ full access to the software
‣ control of the execution environment

✦ Our main goal is to make the key extraction difficult

7Illustration: http://www.whiteboxcrypto.com/ 

http://www.whiteboxcrypto.com/


Goal

✦ To build a cryptocurrency wallet application
‣ It is capable of sending/receiving coins
‣ Transactions are signed by White-box ECDSA

✦ This app supports Bitcoin and Ethereum transactions
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broadcast 
transaction

subscribe 
incoming coins



Overview of Architecture
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🗝 WB Signature

transaction 
data

signed 
transaction

Token

Generator

🗝

🗝

🗝
🗝

🗝

🗝

Offline Server

Wallet App

Decentralised Network

user password 
environmental


fingerprint

✦ A token is a secure container for a key 
‣ generated by a trusted server
‣ operated by a white-box signature

✦ Server is deployed on a trusted and isolated environment
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Key and Address in Cryptocurrencies
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Private Key

d

Public Key

Q

Address

A

Elliptic Curve 

Scalar Multiplication

One-way

Hash Function

🚫🚫
Discrete Logarithm Problem



Privacy problem

✦ If Alice uses only one address for many transactions… 
It is fine. BUT…
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👩 👦

🧐 
Alice’s address

Full Alice’s transaction history

Alice Bob

Transaction

Alice’s address

Bob’s address

Amount

Alice’s signature

Alice sends coins to Bob



Privacy problem: solution

✦ Should avoid reusing addresses

✦ One address involves in only two transactions
‣ Receive coins from another address
‣ Send coins to another address

✦ Change receiver’s address right after receiving 
coins from someone

✦ → Split total balance into small amounts 
contained by different addresses
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How to manage many addresses and keys?



Wallet Types
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→ Good choice→ Bad choice

Non-deterministic Deterministic

✦ Independent generation

✦ No relation

✦ Tree-like structure

✦ Keep secret only the seed



Mnemonic Code Words

✦ BIP-39: Mnemonic code for generating deterministic keys*
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Generate Entropy (N bits)

Entropy (N bits) Checksum 


SHA256

0000000000

0000000001


…

00001100000 

…

11111111111

abandon

ability


…

army 

…

zoo

“army van defense carry jealous true 
garbage claim echo media make crunch” “mnemonic” + (optional) passphrase

PBKDF2 using HMAC-SHA512

(2048 rounds)

354c22aedb9a37407adc61f657a6f00d10ed125efa360215
f36c6919abd94d6dbc193a5f9c495e21ee74118661e327e

84a5f5f11fa373ec33b80897d4697557d

1 2

3

4

5 6

7

(*) Source: https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki

Easy to transcribe

Easy to recover

Need to be kept secure



HD wallet from the Seed

✦ BIP-32: Hierarchical Deterministic Wallets*

✦ A tree-like structure of keys:
‣ Generate Master Key from Seed
‣ Generate a child private key from a parent private key
‣ Generate a child public key from a parent public key 

(without the need of the private key)

16(*) Source: https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki

Master Key (from Seed)



Generate Master Key from Seed
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Cryptographically Secure Pseudo-Random

Number Generator

Mnemonic Code Words

“army van defense …”

Root Seed HMAC-SHA512

Master Private Key (sk)

(256 bits)

Master Public Key (pk)

(264 bits)

Master Chain Code (c)

(256 bits)

left
 25

6 b
its

right 256 bits
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HMAC-SHA512

Child Private Key ( )

(256 bits)

skc

Child Public Key ( )

(264 bits)

pkc

Child Chain Code ( )

(256 bits)

cc

left
 25

6 b
its

right 256 bits

Parent Private Key ( )

(256 bits)

skp

Parent Public Key ( )

(264 bits)

pkp

Parent Chain Code ( )

(256 bits)

cp

Index Number ( )

(32 bits)

i

Add

‣
‣
‣
‣ xprv = (sk || c): enough to generate 

(l, cc) = HMAC-SHA512(pkp, cp, i)
skc = skp + l
pkc = skc × G = (skp + l) × G

Child private key from parent private key
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HMAC-SHA512

Child Public Key ( )

(264 bits)

pkc

Child Chain Code ( )

(256 bits)

cc

right 256 bits

Parent Public Key ( )

(264 bits)

pkp

Parent Chain Code ( )

(256 bits)

cp

Index Number ( )

(32 bits)

i

Add

Mul

G

‣
‣ Previous calculation: 

‣ Now: 

‣ xpub = (pk || c): enough to generate 

(l, cc) = HMAC-SHA512(pkp, cp, i)
pkc = skc × G = (skp + l) × G

pkc = pkp + l × G = skp × G + l × G = (skp + l) × G

Public key is generated without the need of private key

Child public key from parent public key



Key Structure Specification

✦ BIP-44: Multi-Account Hierarchy for Deterministic Wallets*
‣ m / purpose' / coin_type' / account' / change / address_index
‣ Example: m / 44' / 0' / 0' / 0 / 1
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m

(BIP) 44’

(Bitcoin) 0’

(account) 0’

(receiving address) 0 1 (change address)

0 1
…

231-1 0 1 231-1
…

0 1
…

231-1 0 1 231-1
…

60’ (Ethereum)

0’ (account)

0 1

(*) Source: https://github.com/bitcoin/bips/blob/master/bip-0044.mediawiki



How to get balance?

✦ Get information on Bitcoin network for each address

✦ When to stop?
‣ 20 consecutive fresh addresses (no transaction)
‣ Why 20? BIP-44
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0
…

231-1
…… …

Get information
20

STOP

…
Balance 0 0 0.2 1 0 0

USED BEING USED UNUSED
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Transaction Components
✦ A transaction can include

‣ One or many addresses as inputs
‣ One or many addresses as outputs

✦ The change is not automatically sent back to the sender

✦ Transaction fee
‣ Fee = Sum(inputs) - Sum(outputs)
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Create a new transaction

txid = 222

vin
txid
vout

ScriptSig

txid
vout

ScriptSig

vout
value = 1 BTC
ScriptPubKey

value = 2 BTC
ScriptPubKey

✦ Example: Alice has 1 BTC and wants to send Bob 0.9 BTC

24

vin
txid = 222
vout = 0
ScriptSig

vout
value = 0.9

ScriptPubKey

<Sig> <Alice’s PubK>

No txid since transaction 
has not been confirmed yet

DUP HASH160 <Bob’s PubKHash> EQUALVERIFY CHECKSIG

DUP HASH160 <Alice’s PubKHash> EQUALVERIFY CHECKSIG
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Create account on wallet

✦ Wallet app only stores xpub (of account node)

✦ From xpub, it can generate addresses and public keys

26

Server Generate new
mnemonic code

xpub



Spendable Amount

✦ Private keys are not stored in the app 

✦ What is spendable amount?
‣ Sum of positive balance of addresses
‣ Tokens (private keys) are available in the app 

✦ Increase spendable amount
‣ Connect to server (by cable)
‣ Update tokens

27



28

mnemonic code

✦ A token is a secure container for a key 
‣ generated by a trusted server
‣ operated by a white-box signature generator

Overview of Architecture

→ Why secure?

🗝 WB Signature

transaction 
data

signed 
transaction

Token

Generator

🗝

🗝

🗝
🗝

🗝

🗝

Offline Server

Wallet App

Decentralised Network

user password 
environmental


fingerprint



WBC

Server: token generator
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Secret d AES Encryption

msk

token AES Encryption eToken

PBKDF2

pwd

✦ pwd = (user password || environmental fingerprint)

✦ msk is a random key generated together with WB parts  



WBC

Wallet app: signature generator
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eToken AES Decryption

msk

token

AES Decryption Secret d

PBKDF2

pwd

ECDSA

msg hash 

sig

✦ pwd = (user password || environmental fingerprint)

✦ msk is a random key generated together with WB parts  
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Screenshots

32Demo available at: https://youtu.be/Y9EIZL_G5A8

https://youtu.be/Y9EIZL_G5A8


Summary

✦ Generation and management of keys in a wallet
‣ Mnemonic code
‣ Tree structure of keys

✦ Creation of a new Bitcoin (and Ethereum) transaction

✦ Architecture of a secure wallet application
‣ Token generation
‣ Token usage with white-box cryptography

✦ Survey attacks and countermeasures on ECDSA  
(not presented here)

✦ White-box ECDSA is still a challenge

33



Thank you
Any question?
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Appendix
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A possible risk

xpub 0

xpub 1 xpub 2

xpub 3 xpub 4 xpub 5 xpub 6

Somehow 
sk is leaked ✦ Private keys of its children are 

revealed (xpub 5, 6)

✦ Private key of xpub 0 can be 
deduced
‣
‣

✦ →Harden child key derivation

(l, c2) = HMAC-SHA512(xpub0, i)
sk0 = sk2 − l

36

xprv = (sk || c)
xpub = (pk || c)

Same chain code in xpub and xprv
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HMAC-SHA512

Child Private Key ( )

(256 bits)

mc

Child Public Key ( )

(264 bits)

Mc

Child Chain Code ( )

(256 bits)

cc

left
 25

6 b
its

right 256 bits

Parent Private Key ( )

(256 bits)

mp

Parent Chain Code ( )

(256 bits)

cp

Index Number ( )

(32 bits)

i

Add

‣
‣
‣

(l, cc) = HMAC-SHA512(skp, cp, i)
skc = skp + l
pkc = skc × G = (skp + l) × G

Harden child key derivation
✦ Break the relationship between parent public key and child chain code

✦ Use parent private key to derive child chain code, instead of the parent public key

✦ Cannot generate child public key without the need of private key anymore

Parent Public Key ( )

(264 bits)

pkp



Index Number

0 1 231-1 231 231+1 232-1… …

Normal derivation Harden derivation

✦ Use prime symbol to denote index for a harden child
‣
‣ Example: 

i′￼= 231 + i
2′￼= 231 + 2
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Transaction Fee

✦ Fee = Sum(inputs) - Sum(outputs)

✦ Calculated based on the size of transaction
‣ A block has a limited size (1 MB)
‣ Miners want to include many transactions in a block
‣ Large-size transaction (may) contains many inputs, which needs 

more efforts to refer to

✦ Use API to know suitable fee (satoshi/byte)
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Unspent Transaction Output (UTXO)

Alice’s UTXOs

Alice’s UTXOMiner’s UTXO Bob’s UTXO

Before 

Transaction

After 

Transaction

✦ UTXO refers to a transaction output that can be used as 
input in a new transaction
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Transaction in detail

txid

vin
txid
vout

ScriptSig

txid
vout

ScriptSig

vout
value

ScriptPubKey

value
ScriptPubKey

Provided by miner when transaction is confirmed

Refer to a previous transaction, which has an UTXO

Locate the UTXO by position

<Sig><Sender’s PubK> (corresponds to that UTXO)

Sending amount

DUP HASH160 <Receiver’s PubKHash> EQUALVERIFY CHECKSIG

✦ Example: a transaction with 2 inputs and 2 outputs
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How to validate this transaction?

✦ Concatenate ScriptSig and ScriptPubKey
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✦Execute a program by a stack


✦ If it returns true, the transaction is valid



Validate transaction by Stack
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Validate transaction by Stack
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<sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHECKSIG
scriptSig scriptPubKey

<sig>
<PubK>

<sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHECKSIG
scriptSig scriptPubKey

<sig>
<PubK>
<PubK>

<sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHECKSIG
scriptSig scriptPubKey

<sig>
<PubK>

<PubKHash>
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<sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHECKSIG
scriptSig scriptPubKey

<sig>
<PubK>

<PubKHash>
<PubKHash>

<sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHECKSIG
scriptSig scriptPubKey

<sig>
<PubK>

<sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHECKSIG
scriptSig scriptPubKey

TRUE



Transaction in detail

vin
txid
vout

(empty)

txid
vout

ScriptPubKey

vout
value

ScriptPubKey

value
ScriptPubKey
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Message Hash

(to be signed)Double SHA256
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