
Secure wallet application for cryptocurrency
and blockchain transactions

by Viet-Sang Nguyen

Monday, September 6th, 2021

1

CryptoExperts

✦ Founded in 2009, based in Paris

✦ Research team & service company

✦ Strong focus on cryptography & security of embedded systems

✦ Services of custom crypto design, implementation, evaluation

✦ Software & technologies
‣ Secure embedded crypto libraries
‣ White-box cryptography
‣ Fully Homomorphic Encryption

✦ Website: www.cryptoexperts.com

2

http://www.cryptoexperts.com

Outlines
1. Introduction

✦Context
✦Goal

2. Keys and addresses for cryptocurrencies
✦Address derivation
✦Privacy problem
✦Tree-like structure of keys (HD Wallet)

3. Transactions
✦Transaction components (Bitcoin)
✦How to create a transaction?

4. Secure wallet architecture
✦Account on wallet
✦Token generator and usage

5. Summary

3

Outlines

1. Introduction
✦Context
✦Goal

2. Keys and addresses for cryptocurrencies

3. Transactions

4. Secure wallet architecture

5. Summary

4

Context

✦ A valid transaction is signed by ECDSA

✦ One has control over coins if she has the private key

5

Manage Keys

Create transactions

Sign transactions

Broadcast transactions

Responsibilities of a wallet

→Key protection is extremely important

Context

✦ Many wallets “help” users to manage keys

✦ Risk: keys are stored on smartphone (open environment)

6

→Need a secure wallet app

White-Box Cryptography
✦ Hide the secret key in an obfuscated cryptographic implementation

✦ An attacker is assumed to have
‣ full access to the software
‣ control of the execution environment

✦ Our main goal is to make the key extraction difficult

7Illustration: http://www.whiteboxcrypto.com/

http://www.whiteboxcrypto.com/

Goal

✦ To build a cryptocurrency wallet application
‣ It is capable of sending/receiving coins
‣ Transactions are signed by White-box ECDSA

✦ This app supports Bitcoin and Ethereum transactions

8

broadcast
transaction

subscribe
incoming coins

Overview of Architecture

9

🗝 WB Signature

transaction
data

signed
transaction

Token

Generator

🗝

🗝

🗝
🗝

🗝

🗝

Offline Server

Wallet App

Decentralised Network

user password
environmental

fingerprint

✦ A token is a secure container for a key
‣ generated by a trusted server
‣ operated by a white-box signature

✦ Server is deployed on a trusted and isolated environment

Outlines

1. Introduction

2. Keys and addresses for cryptocurrencies
✦Address derivation
✦Privacy problem
✦Tree-like structure of keys (HD Wallet)

3. Transactions

4. Secure wallet architecture

5. Summary

10

Key and Address in Cryptocurrencies

11

Private Key

d

Public Key

Q

Address

A

Elliptic Curve

Scalar Multiplication

One-way

Hash Function

🚫🚫
Discrete Logarithm Problem

Privacy problem

✦ If Alice uses only one address for many transactions… 
It is fine. BUT…

12

👩 👦

🧐
Alice’s address

Full Alice’s transaction history

Alice Bob

Transaction

Alice’s address

Bob’s address

Amount

Alice’s signature

Alice sends coins to Bob

Privacy problem: solution

✦ Should avoid reusing addresses

✦ One address involves in only two transactions
‣ Receive coins from another address
‣ Send coins to another address

✦ Change receiver’s address right after receiving
coins from someone

✦ → Split total balance into small amounts
contained by different addresses

13

How to manage many addresses and keys?

Wallet Types

14

→ Good choice→ Bad choice

Non-deterministic Deterministic

✦ Independent generation

✦ No relation

✦ Tree-like structure

✦ Keep secret only the seed

Mnemonic Code Words

✦ BIP-39: Mnemonic code for generating deterministic keys*

15

Generate Entropy (N bits)

Entropy (N bits) Checksum

SHA256

0000000000

0000000001

…

00001100000

…

11111111111

abandon

ability

…

army

…

zoo

“army van defense carry jealous true
garbage claim echo media make crunch” “mnemonic” + (optional) passphrase

PBKDF2 using HMAC-SHA512

(2048 rounds)

354c22aedb9a37407adc61f657a6f00d10ed125efa360215
f36c6919abd94d6dbc193a5f9c495e21ee74118661e327e

84a5f5f11fa373ec33b80897d4697557d

1 2

3

4

5 6

7

(*) Source: https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki

Easy to transcribe

Easy to recover

Need to be kept secure

HD wallet from the Seed

✦ BIP-32: Hierarchical Deterministic Wallets*

✦ A tree-like structure of keys:
‣ Generate Master Key from Seed
‣ Generate a child private key from a parent private key
‣ Generate a child public key from a parent public key 

(without the need of the private key)

16(*) Source: https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki

Master Key (from Seed)

Generate Master Key from Seed

17

Cryptographically Secure Pseudo-Random

Number Generator

Mnemonic Code Words

“army van defense …”

Root Seed HMAC-SHA512

Master Private Key (sk)

(256 bits)

Master Public Key (pk)

(264 bits)

Master Chain Code (c)

(256 bits)

left
 25

6 b
its

right 256 bits

18

HMAC-SHA512

Child Private Key ()

(256 bits)

skc

Child Public Key ()

(264 bits)

pkc

Child Chain Code ()

(256 bits)

cc

left
 25

6 b
its

right 256 bits

Parent Private Key ()

(256 bits)

skp

Parent Public Key ()

(264 bits)

pkp

Parent Chain Code ()

(256 bits)

cp

Index Number ()

(32 bits)

i

Add

‣
‣
‣
‣ xprv = (sk || c): enough to generate

(l, cc) = HMAC-SHA512(pkp, cp, i)
skc = skp + l
pkc = skc × G = (skp + l) × G

Child private key from parent private key

19

HMAC-SHA512

Child Public Key ()

(264 bits)

pkc

Child Chain Code ()

(256 bits)

cc

right 256 bits

Parent Public Key ()

(264 bits)

pkp

Parent Chain Code ()

(256 bits)

cp

Index Number ()

(32 bits)

i

Add

Mul

G

‣
‣ Previous calculation:

‣ Now:

‣ xpub = (pk || c): enough to generate

(l, cc) = HMAC-SHA512(pkp, cp, i)
pkc = skc × G = (skp + l) × G

pkc = pkp + l × G = skp × G + l × G = (skp + l) × G

Public key is generated without the need of private key

Child public key from parent public key

Key Structure Specification

✦ BIP-44: Multi-Account Hierarchy for Deterministic Wallets*
‣ m / purpose' / coin_type' / account' / change / address_index
‣ Example: m / 44' / 0' / 0' / 0 / 1

20

m

(BIP) 44’

(Bitcoin) 0’

(account) 0’

(receiving address) 0 1 (change address)

0 1
…

231-1 0 1 231-1
…

0 1
…

231-1 0 1 231-1
…

60’ (Ethereum)

0’ (account)

0 1

(*) Source: https://github.com/bitcoin/bips/blob/master/bip-0044.mediawiki

How to get balance?

✦ Get information on Bitcoin network for each address

✦ When to stop?
‣ 20 consecutive fresh addresses (no transaction)
‣ Why 20? BIP-44

21

0
…

231-1
…… …

Get information
20

STOP

…
Balance 0 0 0.2 1 0 0

USED BEING USED UNUSED

Outlines

1. Introduction

2. Keys and addresses for cryptocurrencies

3. Transactions
✦Transaction components (Bitcoin)
✦How to create a transaction?

4. Secure wallet architecture

5. Summary

22

Transaction Components
✦ A transaction can include

‣ One or many addresses as inputs
‣ One or many addresses as outputs

✦ The change is not automatically sent back to the sender

✦ Transaction fee
‣ Fee = Sum(inputs) - Sum(outputs)

23

Create a new transaction

txid = 222

vin
txid
vout

ScriptSig

txid
vout

ScriptSig

vout
value = 1 BTC
ScriptPubKey

value = 2 BTC
ScriptPubKey

✦ Example: Alice has 1 BTC and wants to send Bob 0.9 BTC

24

vin
txid = 222
vout = 0
ScriptSig

vout
value = 0.9

ScriptPubKey

<Sig> <Alice’s PubK>

No txid since transaction
has not been confirmed yet

DUP HASH160 <Bob’s PubKHash> EQUALVERIFY CHECKSIG

DUP HASH160 <Alice’s PubKHash> EQUALVERIFY CHECKSIG

Outlines

1. Introduction

2. Keys and addresses for cryptocurrencies

3. Transactions

4. Secure wallet architecture
✦Account on wallet
✦Token generator and usage

5. Summary

25

Create account on wallet

✦ Wallet app only stores xpub (of account node)

✦ From xpub, it can generate addresses and public keys

26

Server Generate new
mnemonic code

xpub

Spendable Amount

✦ Private keys are not stored in the app 

✦ What is spendable amount?
‣ Sum of positive balance of addresses
‣ Tokens (private keys) are available in the app 

✦ Increase spendable amount
‣ Connect to server (by cable)
‣ Update tokens

27

28

mnemonic code

✦ A token is a secure container for a key
‣ generated by a trusted server
‣ operated by a white-box signature generator

Overview of Architecture

→ Why secure?

🗝 WB Signature

transaction
data

signed
transaction

Token

Generator

🗝

🗝

🗝
🗝

🗝

🗝

Offline Server

Wallet App

Decentralised Network

user password
environmental

fingerprint

WBC

Server: token generator

29

Secret d AES Encryption

msk

token AES Encryption eToken

PBKDF2

pwd

✦ pwd = (user password || environmental fingerprint)

✦ msk is a random key generated together with WB parts

WBC

Wallet app: signature generator

30

eToken AES Decryption

msk

token

AES Decryption Secret d

PBKDF2

pwd

ECDSA

msg hash

sig

✦ pwd = (user password || environmental fingerprint)

✦ msk is a random key generated together with WB parts

Outlines

1. Introduction

2. Keys and addresses for cryptocurrencies

3. Transactions

4. Secure wallet architecture

5. Summary

31

Screenshots

32Demo available at: https://youtu.be/Y9EIZL_G5A8

https://youtu.be/Y9EIZL_G5A8

Summary

✦ Generation and management of keys in a wallet
‣ Mnemonic code
‣ Tree structure of keys

✦ Creation of a new Bitcoin (and Ethereum) transaction

✦ Architecture of a secure wallet application
‣ Token generation
‣ Token usage with white-box cryptography

✦ Survey attacks and countermeasures on ECDSA  
(not presented here)

✦ White-box ECDSA is still a challenge

33

Thank you
Any question?

34

Appendix

35

A possible risk

xpub 0

xpub 1 xpub 2

xpub 3 xpub 4 xpub 5 xpub 6

Somehow
sk is leaked ✦ Private keys of its children are

revealed (xpub 5, 6)

✦ Private key of xpub 0 can be
deduced
‣
‣

✦ →Harden child key derivation

(l, c2) = HMAC-SHA512(xpub0, i)
sk0 = sk2 − l

36

xprv = (sk || c)
xpub = (pk || c)

Same chain code in xpub and xprv

37

HMAC-SHA512

Child Private Key ()

(256 bits)

mc

Child Public Key ()

(264 bits)

Mc

Child Chain Code ()

(256 bits)

cc

left
 25

6 b
its

right 256 bits

Parent Private Key ()

(256 bits)

mp

Parent Chain Code ()

(256 bits)

cp

Index Number ()

(32 bits)

i

Add

‣
‣
‣

(l, cc) = HMAC-SHA512(skp, cp, i)
skc = skp + l
pkc = skc × G = (skp + l) × G

Harden child key derivation
✦ Break the relationship between parent public key and child chain code

✦ Use parent private key to derive child chain code, instead of the parent public key

✦ Cannot generate child public key without the need of private key anymore

Parent Public Key ()

(264 bits)

pkp

Index Number

0 1 231-1 231 231+1 232-1… …

Normal derivation Harden derivation

✦ Use prime symbol to denote index for a harden child
‣
‣ Example:

i′￼= 231 + i
2′￼= 231 + 2

38

Transaction Fee

✦ Fee = Sum(inputs) - Sum(outputs)

✦ Calculated based on the size of transaction
‣ A block has a limited size (1 MB)
‣ Miners want to include many transactions in a block
‣ Large-size transaction (may) contains many inputs, which needs

more efforts to refer to

✦ Use API to know suitable fee (satoshi/byte)

39

Unspent Transaction Output (UTXO)

Alice’s UTXOs

Alice’s UTXOMiner’s UTXO Bob’s UTXO

Before

Transaction

After

Transaction

✦ UTXO refers to a transaction output that can be used as
input in a new transaction

40

Transaction in detail

txid

vin
txid
vout

ScriptSig

txid
vout

ScriptSig

vout
value

ScriptPubKey

value
ScriptPubKey

Provided by miner when transaction is confirmed

Refer to a previous transaction, which has an UTXO

Locate the UTXO by position

<Sig><Sender’s PubK> (corresponds to that UTXO)

Sending amount

DUP HASH160 <Receiver’s PubKHash> EQUALVERIFY CHECKSIG

✦ Example: a transaction with 2 inputs and 2 outputs

41

42

43

How to validate this transaction?

✦ Concatenate ScriptSig and ScriptPubKey

44

✦Execute a program by a stack

✦ If it returns true, the transaction is valid

Validate transaction by Stack

45

Validate transaction by Stack

46

47

<sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHECKSIG
scriptSig scriptPubKey

<sig>
<PubK>

<sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHECKSIG
scriptSig scriptPubKey

<sig>
<PubK>
<PubK>

<sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHECKSIG
scriptSig scriptPubKey

<sig>
<PubK>

<PubKHash>

48

<sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHECKSIG
scriptSig scriptPubKey

<sig>
<PubK>

<PubKHash>
<PubKHash>

<sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHECKSIG
scriptSig scriptPubKey

<sig>
<PubK>

<sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHECKSIG
scriptSig scriptPubKey

TRUE

Transaction in detail

vin
txid
vout

(empty)

txid
vout

ScriptPubKey

vout
value

ScriptPubKey

value
ScriptPubKey

49

Message Hash

(to be signed)Double SHA256

WhibOx Contest 2021

50

WhibOx Contest 2021

51

