
Linear Cryptanalysis and Countermeasures
in Persistent Fault Model

by Viet-Sang Nguyen
22 June 2023

joint work with Vincent Grosso and Pierre-Louis Cayrel
in ANR PROPHY project

/34

1. Context

‣ Previous PFA

‣ Our research questions

2. Countermeasures against biased faulty SBoxes

‣ BALoo

‣ Frequency Checking

3. Linear Cryptanalysis: PRESENT with non-biased faulty SBox
4. Stronger Countermeasures

‣ Permutation Network

‣ Cyclic Redundancy Code

5. Summary

Outlines

2

/34

1. Context

‣ Previous PFA

‣ Our research questions

2. Countermeasures against biased faulty SBoxes

‣ BALoo

‣ Frequency Checking

3. Linear Cryptanalysis: PRESENT with non-biased faulty SBox
4. Stronger Countermeasures

‣ Permutation Network

‣ Cyclic Redundancy Code

5. Summary

Outlines

3

/34

Previous Persistent Fault Attacks (PFA)

4

non-volatile memory

C 5 6 B 9 0 A D
3 E F 8 4 7 1 2

SBoxlook-up

look-u
p

ciphertexts: uniform distribution

/34

Previous Persistent Fault Attacks (PFA)

5

non-volatile memory

5 5 6 B 9 0 A D
3 E F 8 4 7 1 2

look-up

look-u
p

✦ Fault on first element: C → 5

‣ C: disappears

‣ 5: appears twice

biased faulty SBox⚡

ciphertexts: non-uniform distribution

/34

Non-uniform Distribution of Ciphertexts

6

✦ Attacks: [Zhang et al., CHES18,20], [Pan et al., DATE19], [Gruber et al., FDTC19],
[Engels et al., FDTC20], [Soleimany et al., CHES22]

/347

Research Questions

5 5 6 B 9 0 A D
3 E F 8 4 7 1 2

biased faulty SBox

⚡✦ Countermeasures ?

‣ biased faulty SBox

C 6 5 B 9 0 A D
3 E F 8 4 7 1 2

non-biased faulty SBox

⚡⚡

✦ What if swap 2 elements ?

‣ non-biased faulty SBox

‣ possible to recover key ?

✦ (Stronger) Countermeasures ?

‣ both biased and non-biased
faulty SBoxes

/34

✦ Ensure the integrity of SBox 👮

‣ Detect any (?) injected faults 🚨

‣ Make it impractical for attacker to successfully inject faults

Principle of Countermeasures

8

/34

1. Context

‣ Previous PFA

‣ Our research questions

2. Countermeasures against biased faulty SBoxes

‣ BALoo

‣ Frequency Checking

3. Linear Cryptanalysis: PRESENT with non-biased faulty SBox
4. Stronger Countermeasures

‣ Permutation Network

‣ Cyclic Redundancy Code

5. Summary

Outlines

9

/34

✦ Redundancy info:
(stored in non-volatile memory)

‣ Number of cycles

‣ Starting indices

‣ Their lengths

✦ Verify before encryption

Countermeasure: BALoo [Tissot et al., 2023]

10

0
C

4

9 E

1

5
2

6

A

F 3

B 8

7

D

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

S(0) = C, S[C] = 4, …

/34

✦ Each element should appear ONCE
✦ Example:

‣ Freq(6) = 1 → OK

‣ Freq(5) = 2 → fault detected

✦ Not require redundancy info

Countermeasure: Frequency Check

11

5 5 6 B 9 0 A D
3 E F 8 4 7 1 2

biased faulty SBox

⚡

/34

✦ Efficiency:

‣ detect any biased faulty SBoxes ✅

‣ prevent attacks in prior works ✅

BALoo and Frequency Check

12

5 5 6 B 9 0 A D
3 E F 8 4 7 1 2

biased faulty SBox

⚡

/34

✦ YES !!! 😈

But…can we bypass them ? 🤔

13

0
C

4

9 E

1

5
2

6

A

F 3

B 8

7

D

C 5 A B 9 0 2 D
3 E F 8 4 7 1 6

non-biased faulty SBox

⚡⚡

⚡

C 5 E B 9 0 A D
3 6 F 8 4 7 1 2

non-biased faulty SBox
⚡

⚡

Freq(E) = 1 → OK
Freq(6) = 1 → OK

1110 0110
2 bitflips

↔
4 bitflips

/34

✦ Prior attacks are still applicable ?

‣ NO 👿

‣ Non-biased faulty SBox → still uniform ciphertexts

OK! Bypass…then what next ? 🤔

14

✦ New attack ? 🤔

‣ YES (but very classical, not new) 😈

‣ Linear Cryptanalysis

/34

1. Context

‣ Previous PFA

‣ Our research questions

2. Countermeasures against biased faulty SBoxes

‣ BALoo

‣ Frequency Checking

3. Linear Cryptanalysis: PRESENT with non-biased faulty SBox
4. Stronger Countermeasures

‣ Permutation Network

‣ Cyclic Redundancy Code

5. Summary

Outlines

15

/34

✦ Find a good linear approximation

✦ Use statistical analysis

‣ many plaintext-ciphertext pairs

✦ Recover part of key

Classical Linear Cryptanalysis [Matsui, CRYPTO94]

16

/34

Linear Approximation Table: 1-bit LAT

17

S

mask: u = 10002 = 8

mask: v = 10002 = 8

LAT (biases): #{x ∈ 𝔽4
2 : u ⋅ x = v ⋅ S[x]} − 8

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

u\v 1 2 4 8

1

2

4

8 -2

S

mask: u = 10002 = 8

mask: v = 01002 = 4

u\v 1 2 4 8

1

2

4

8 0 -2

u\v 1 2 4 8

1 0 0 0 0

2 0 2 -2 2

4 0 -2 -2 -2

8 0 2 0 -2

/34

Linear Approximation Table: 1-bit LAT

18

u\v 1 2 4 8

1 0 0 0 0

2 0 2 -2 2

4 0 -2 -2 -2

8 0 2 0 -2

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

original

u\v 1 2 4 8

1 0 2 -2 -2

2 0 4 -4 0

4 0 0 -4 -4

8 0 0 2 0

u\v 1 2 4 8

1 0 0 2 0

2 0 2 -2 2

4 0 -2 0 -2

8 -2 2 0 -4

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) C 5 6 B 9 0 A 3 D E F 8 4 7 1 2⚡ ⚡

2 swaps

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) C 5 F B 9 0 A D 3 E 2 8 4 7 1 6
⚡ ⚡ ⚡

3 swaps

seems very vulnerable !!! 😈

/34

✦ Success probability:

Complexity Estimation [Nyberg et al., FSE17]

19

PS = 2 − 2Φ (1/N + ELP

1/N + 2−b
Φ−1(1 − 2−a−b))

✦ Data complexity: N =
Φ−1(1 − 2−a−1)2 − Φ−1(1 − PS /2)2

ELP ⋅ Φ−1(1 − PS /2)2 − 2−|K|Φ−1(1 − 2−a−1)2

✦ For PRESENT:
‣ : block size

‣ : key size

b = 64
|K | = 80

✦ Estimated Linear Potential (ELP):
‣ derived from 1-bit LAT

‣ computed over 28 rounds (out of 31)
✦ : number of advantage bits
‣ recover bits by linear attack

‣ only need to brute-force bits

a
a

|K | − a

relations between ? 🤔a, PS, N

/34

Attack on full-round PRESENT

20

a = 10 a = 20

/34

Attack on full-round PRESENT

21

a = 30 a = 40

/34

1. Context

‣ Previous PFA

‣ Our research questions

2. Countermeasures against biased faulty SBoxes

‣ BALoo

‣ Frequency Checking

3. Linear Cryptanalysis: PRESENT with non-biased faulty SBox
4. Stronger Countermeasures

‣ Permutation Network

‣ Cyclic Redundancy Code

5. Summary

Outlines

22

/34

✦ PN computations [Bernstein, 2020]:

‣ PN → Control bits

‣ Control bits → PN

Permutation Network [Beneš, 1964]

23

data flow control bits: 010110

/34

✦ Control bits as redundancy

✦ Before encryption:

‣ control bits → PN: SBox’

‣ compare SBox’ with SBox

✦ Seems good, but… 🤔

PN-based Countermeasure

24

non-volatile memory

C 5 6 B 9 0 A D
3 E F 8 4 7 1 2

SBox

00000000…00101101
control bits

/34

✦ What if both SBox and
control bits are faulted ? 🤔

PN-based Countermeasure

25

non-volatile memory

C 6 5 B 9 0 A D
3 E F 8 4 7 1 2

SBox

00100000…00101101
control bits

⚡⚡

⚡

control bits: 110110

x0

x1

 3 bitflips at precise locations to bypass !!! 😈≥
But still (always) able to detect biased faulty SBox ✅

/34

✦ Indices of bit 1 (in control bits)
as redundancy

‣ Attacker cannot change #bit1

Improved PN-based Countermeasure

26

SBox #bits #controlbits #bit1 (orig. SBox) #bit1 (faulty SBox with 2 elements swapped)

AES 8 1920 846
{803, 805, 813, 829, 831, 833, 837, 839, 841, 843,
845, 847, 849, 851, 853, 855, 857, 859, 861, 863,

865, 867, 869, 871, 873, 877, 879, 881, 891}

PRESENT/LED 4 56 18 {15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37}

GIFT 4 56 26 {19, 21, 23, 25, 27, 29 }

PRINCE 4 56 22 {19, 21, 23, 25, 27}

#bit1 (orig. SBox) {#bit1 (all faulty SBoxes with 2 elememts swapped)}∉

SBox

15, 25, 26, …, 52, 53, 55

indices of bit1 in control bits

C 5 6 B 9 0 A D
3 E F 8 4 7 1 2

/34

✦ Always able to detect
‣ biased faulty SBoxes ✅

‣ faulty SBoxes with 2 elements swapped ✅

‣ Simplify algorithm: control bits → PN 👍
(no need to traverse all swap gates)

Improved PN-based Countermeasure

27

control bits: 010110✦ “In-place” property:
‣ Maintain an array for different layers

‣ Control bits must be processed in order

indices of bit1: [1, 3, 4]

/34

✦ If inject faults on indices…

Improved PN-based Countermeasure

28

control bits: 010110
indices of bit1: [1, 3, 4]

given

→ very challenging for attacker !!! 👿

rough est.: 4 bitflips at precise locations to bypass !!! 👿≥

target

control bits: 000111
indices of bit1: [3, 4, 5]

actual

control bits: 000111
indices of bit1: [5, 3, 4]

/34

✦ Common method to protect data integrity

‣ -bit data:

‣ generator polynomial (of degree):

‣ -bit redundancy:

‣ to transmit/store:

✦ Verification

‣

✦ Efficient soft/hardware implementations

k D(x)
n − k + 1 P(x)

(n − k)
R(x) = xn−kD(x) mod P(x)

T(x) = xn−kD(x) + R(x)

T(x) mod P(x) ?= 0

CRC: Cyclic Redundancy Code

29

non-volatile memory

C 5 6 B 9 0 A D
3 E F 8 4 7 1 2

SBox

1000100
CRC

D(x)

R(x)

/34

✦ 4-bit SBox: 0x97 - 8 bits

✦ 8-bit SBox: 0xC07 - 12 bits

✦ Advantage:

‣ Detect any 1-, 2-, 3-bit errors

R(x)

R(x)

Choice of [Koopman et al., 2004]P(x)

30

non-volatile memory

C 5 6 B 9 0 A D
3 E F 8 4 7 1 2

SBox

1000100
CRC

D(x)

R(x)

✦ What if faults on both SBox and CRC?

⚡

⚡

rough est.: 2 bitflips at precise locations to bypass !!! 👿≥

/34

1. Context

‣ Previous PFA

‣ Our research questions

2. Countermeasures against biased faulty SBoxes

‣ BALoo

‣ Frequency Checking

3. Linear Cryptanalysis: PRESENT with non-biased faulty SBox
4. Stronger Countermeasures

‣ Permutation Network

‣ Cyclic Redundancy Code

5. Summary

Outlines

31

/34

✦ Detecting biased faulty SBoxes is not enough

✦ Linear Cryptanalysis with non-biased faulty SBoxes

✦ Stronger countermeasures:

‣ PN-based

‣ CRC-based

Summary

32

/34

Summary

33

Countermeasure Biased Sbox
Non-biased SBox

(2 elements swapped)
Non-biased SBox

(3 elements swapped)

Frequency Check Yes / -- No No

BALoo Yes / -- Yes / -- Yes / 3

PN-based Yes / -- Yes / 3* Yes / 4*

Improved PN-based Yes / -- Yes / -- Yes / 4*

CRC-based Yes / 2* Yes / 3* Yes / 4*

Any questions? 🤔

Thank you!

/3434

Appendix

/34

✦ High chance to be bypassed

‣ Inject a fault in first SBox

‣ Try to inject the same fault
in second SBox
at different locations until bypass

Why not duplication ?

36

non-volatile memory

C 5 6 B 9 0 A D
3 E F 8 4 7 1 2

SBox

C 5 6 B 9 0 A D
3 E F 8 4 7 1 2

⚡

⚡

✦ Essential to have stronger countermeasures ! 💪

/34

Algo: BALoo

37

/34

Algo: Frequency Check

38

/34

Algo: PN-based Countermeasure

39

/34

Algo: Improved PN-based Countermeasure

40

/34

Algo: CRC-based Countermeasure

41

